COMBATTING BANKING MALWARE THREATS: EVALUATING THE EFFICACY OF HYBRID AND SINGLE-CLASSIFICATION ALGORITHMS

Authors

  • Suleiman Dauda
    Kaduna State University, Kaduna
  • Muhammad Aminu Ahmad
    Kaduna State University, Kaduna
  • Ahmad Abubakar Aliyu
    Kaduna State University, Kaduna
  • Mohammed Ibrahim
    Kaduna State University, Kaduna
  • Sa'adatu Abdulkadir
    Kaduna State University, Kaduna
  • Abubakar Mu'azu Ahmed
    Kaduna State University, Kaduna
  • A. S. Mukhtar
    Kaduna State University, Kaduna
  • S. Bello

Keywords:

Accuracy, Banking malware, Cybersecurity, Classification algorithms, Hybrid models, Single classifiers

Abstract

The increasing sophistication and prevalence of banking malware pose significant challenges to cybersecurity, threatening the confidentiality, integrity, and availability of financial systems and user data. This study evaluates the efficacy of hybrid and single-classification algorithms in detecting banking malware, addressing a critical gap in existing research. A total of eight classification algorithms were analyzed, including three hybrid models—Stacked Ensemble with Gradient Boosting, AdaBoost, and Stacking with Decision Trees and Random Forest. Additionally, five single classifiers—Support Vector Machine (SVM), Decision Tree, k-NN, Random Forest and Logistic Regression were assessed. The research methodology incorporated principal component analysis (PCA) for feature selection and techniques like Adasyn and Tomek Link to address data imbalance. Classification performance was evaluated using key metrics: accuracy, precision, recall, and F1-score. Results demonstrated that hybrid models, particularly an ensemble combining Random Forest and Decision Tree, outperformed other classifiers, achieving superior accuracy (0.98), precision, and recall. While Gradient Boosting and AdaBoost also exhibited robust performance, Logistic Regression showed room for improvement in precision and recall metrics. This research highlights the effectiveness of hybrid classification models in enhancing the detection of banking malware and underscores their potential for strengthening cybersecurity defenses in financial systems. The study contributes to the growing literature on machine learning applications in malware detection and provides insights into the strengths and limitations of diverse classification algorithms.

Dimensions

Aboaoja, F. A., Zainal, A., Ghaleb, F. A., Al-Rimy, B. A. S., Eisa, T. A. E., & Elnour, A. A. H. (2022). Malware detection issues, challenges, and future directions: A survey. Applied Sciences, 12(17), 8482.

Alzaylaee, M. K., Yerima, S. Y., & Sezer, S. (2020). DL-Droid: Deep learning-based android malware detection using real devices. Computers & Security, 89, 101663.

Angelo Oliveira. (2019). Malware analysis datasets: API call sequences. IEEE Dataport. https://dx.doi.org/10.21227/tqqm-aq14

Aslan, . A., & Samet, R. (2020). A comprehensive review on malware detection approaches. IEEE Access, 8, 62496271.

Awujoola, O. J., Ogwueleka, F. N., Irhebhude, M. E., & Misra, S. (2021). Wrapper based approach for network intrusion detection model with combination of dual filtering technique of resample and SMOTE. In Artificial Intelligence for Cyber Security: Methods, Issues and Possible Horizons or Opportunities (pp. 139-167). Cham: Springer International Publishing.

Chen, T., & Guestrin, C. (2016, August). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 785794).

Etaher, N., & Weir, G. (2014, June). Understanding the threat of banking malware. In Cyberforensics 2014-International Conference on Cybercrime, Security & Digital Forensics.

Enem, T. A., & Awujoola, O. J. (2023). Malware detection and classification using embedded convolutional neural network and long short-term memory technique. Science World Journal, 18(2), 204-211.

Fuhr, J., Wang, F., & Tang, Y. (2022). MOCA: A network intrusion monitoring and classification system. Journal of Cybersecurity and Privacy, 2(3), 629639.

Gauthama Raman, M. R., Somu, N., & Mathur, A. P. (2019). Anomaly detection in critical infrastructure using probabilistic neural network. In Applications and Techniques in Information Security: 10th International Conference, ATIS 2019, Thanjavur, India, November 2224, 2019, Proceedings 10 (pp. 129141). Springer Singapore.

Guo, Q. Y., Zhang, S. J., Liu, H., Wang, C. L., Wei, F. L., Lv, T., ... & Liu, D. X. (2011). Three-dimensional evaluation of upper anterior alveolar bone dehiscence after incisor retraction and intrusion in adult patients with bimaxillary protrusion malocclusion. Journal of Zhejiang University SCIENCE B, 12, 990997.

Guyon, I., & Elisseeff, A. (2006). An introduction to feature extraction. In Feature extraction: Foundations and applications (pp. 125). Springer Berlin Heidelberg.

Hagedoorn, T. R., & Spanakis, G. (2017, November). Massive open online courses temporal profiling for dropout prediction. In 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI) (pp. 231238). IEEE.

He, K., & Kim, D. S. (2019, August). Malware detection with malware images using deep learning techniques. In 2019 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/13th IEEE International Conference on Big Data Science and Engineering (TrustCom/BigDataSE) (pp. 95102). IEEE.

Jabeur, S. B. (2017). Bankruptcy prediction using partial least squares logistic regression. Journal of Retailing and Consumer Services, 36, 197202.

Kamiska, J. A. (2018). The use of random forests in modelling short-term air pollution effects based on traffic and meteorological conditions: A case study in Wrocaw. Journal of Environmental Management, 217, 164174.

Kazi, M. A., Woodhead, S., & Gan, D. (2019, November). Comparing and analysing binary classification algorithms when used to detect the Zeus malware. In 2019 Sixth HCT Information Technology Trends (ITT) (pp. 611). IEEE.

Kazi, M. A., Woodhead, S., & Gan, D. (2022). An investigation to detect banking malware network communication traffic using machine learning techniques. Journal of Cybersecurity and Privacy, 3(1), 123.

Kedziora, M., Gawin, P., Szczepanik, M., & Jozwiak, I. (2019). Malware detection using machine learning algorithms and reverse engineering of Android Java code. International Journal of Network Security & Its Applications (IJNSA), 11.

Kim, T., Kang, B., Rho, M., Sezer, S., & Im, E. G. (2018). A multimodal deep learning method for Android malware detection using various features. IEEE Transactions on Information Forensics and Security, 14(3), 773788.

Liu, L., Wang, B. S., Yu, B., & Zhong, Q. X. (2017). Automatic malware classification and new malware detection using machine learning. Frontiers of Information Technology & Electronic Engineering, 18(9), 13361347.

Mathur, A., Podila, L. M., Kulkarni, K., Niyaz, Q., & Javaid, A. Y. (2021). NATICUSdroid: A malware detection framework for Android using native and custom permissions. Journal of Information Security and Applications, 58, 102696.

Mathur, M. K., Verma, A. K., Makwana, G. E., & Sinha, M. (2013). Study of opportunistic intestinal parasitic infections in human immunodeficiency virus/acquired immunodeficiency syndrome patients. Journal of Global Infectious Diseases, 5(4), 164.

Mitchell, T. M. (1997). Does machine learning really work? AI Magazine, 18(3), 11.

Ozigis, M. S., Kaduk, J. D., Jarvis, C. H., da Conceio Bispo, P., & Balzter, H. (2020). Detection of oil pollution impacts on vegetation using multifrequency SAR, multispectral images with fuzzy forest and random forest methods. Environmental Pollution, 256, 113360.

Pawlicka, A., Pawlicki, M., Kozik, R., & Chora, M. (2023). What will the future of cybersecurity bring us, and will it be ethical? The hunt for the black swans of cybersecurity ethics. IEEE Access.

Qiu, J., Zhang, J., Luo, W., Pan, L., Nepal, S., & Xiang, Y. (2020). A survey of Android malware detection with deep neural models. ACM Computing Surveys (CSUR), 53(6), 136.

Rieck, K., Holz, T., Willems, C., Dssel, P., & Laskov, P. (2008, July). Learning and classification of malware behavior. In International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment (pp. 108125). Springer Berlin Heidelberg.

Salminen, J., Yoganathan, V., Corporan, J., Jansen, B. J., & Jung, S. G. (2019). Machine learning approach to auto-tagging online content for content marketing efficiency: A comparative analysis between methods and content type. Journal of Business Research, 101, 203217.

Singh, J., & Singh, J. (2021). A survey on machine learning-based malware detection in executable files. Journal of Systems Architecture, 112, 101861.

Tahtaci, B., & Canbay, B. (2020, October). Android malware detection using machine learning. In 2020 Innovations in Intelligent Systems and Applications Conference (ASYU) (pp. 16). IEEE.

Tobiyama, S., Yamaguchi, Y., Shimada, H., Ikuse, T., & Yagi, T. (2016, June). Malware detection with deep neural network using process behavior. In 2016 IEEE 40th Annual Computer Software and Applications Conference (COMPSAC) (Vol. 2, pp. 577582). IEEE.

Usman, N., Usman, S., Khan, F., Jan, M. A., Sajid, A., Alazab, M., & Watters, P. (2021). Intelligent dynamic malware detection using machine learning in IP reputation for forensics data analytics. Future Generation Computer Systems, 118, 124141.

Vinayakumar, R., Alazab, M., Soman, K. P., Poornachandran, P., & Venkatraman, S. (2019). Robust intelligent malware detection using deep learning. IEEE Access, 7, 4671746738.

Yeilkanat, C. M. (2020). Spatio-temporal estimation of the daily cases of COVID-19 in worldwide using random forest machine learning algorithm. Chaos, Solitons & Fractals, 140, 110210.

Zolkipli, M. F., & Jantan, A. (2010, May). A framework for malware detection using combination technique and signature generation. In 2010 Second International Conference on Computer Research and Development (pp. 196199). IEEE.

Published

31-03-2025

How to Cite

COMBATTING BANKING MALWARE THREATS: EVALUATING THE EFFICACY OF HYBRID AND SINGLE-CLASSIFICATION ALGORITHMS. (2025). FUDMA JOURNAL OF SCIENCES, 9(3), 284-293. https://doi.org/10.33003/fjs-2025-0903-3235

How to Cite

COMBATTING BANKING MALWARE THREATS: EVALUATING THE EFFICACY OF HYBRID AND SINGLE-CLASSIFICATION ALGORITHMS. (2025). FUDMA JOURNAL OF SCIENCES, 9(3), 284-293. https://doi.org/10.33003/fjs-2025-0903-3235

Most read articles by the same author(s)

1 2 > >>