COMPARISON BETWEEN KELVIN RADII AND BULK HYGROSCOPICITY OF MASS AND VOLUME BASED HYGROSCOPICITY PARAMETER FOR ATMOSPHERIC AEROSOLS
Abstract
A mass based and volume based hygroscopicities models were applied to the data extracted from Optical Properties of Aerosols and Clouds (OPAC).The microphysical properties obtained were radii, density, refractive index, mass and volume of the atmospheric aerosols of continental average, continental clean, continental polluted, maritime tropical, maritime polluted, maritime clean, at eight different relative humidity of 0%, 50%, 70%, 80%, 90%, 95%, 98% and 99%.Using the microphysical properties, hygroscopic growth factors and effective radii of the mixtures were determined while the parameters Av and Bv for volume based and Am and Bm for mass based of the aerosols were determined using multiple regression analysis with SPSS 16.0 at each relative humidity. Although it was discovered that Bv is more dominant than Av, the R2 for all the models are greater than 90%. The significances are less than 0.05, Am>Av and Bm<Bv, therefore the two models are good for atmospheric modeling.
References
Bilde, M. and Svenningsson, B. (2004): CCN activation of slightly soluble organics: the importance of small amounts of inorganic salt and particle phase, Tellus B, 56, 128–134, 2004.
Broekhuizen, K., Kumar, P. P., and Abbatt, J. P. D. (2004): Partially soluble organics as cloud condensation nuclei: Role of trace soluble and surface active species, Geophys. Res. Lett., 31(1), L01107,doi:10.1029/2003GL018203,.
Hess M., Koepke P., and Schult I (1998), Optical Properties of Aerosols and Clouds: The Software Package OPAC. Bulletin of the American Meteorological Society, 79, 5, 831-844.
Jacobson, M. Z.(2001): Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature, 409, 695–697.
Kawana, K., Kuba, N., Mochida, M., (2014). Assessment of cloud condensation nucleus activation of urban aerosol particles with different hygroscopicity and the application to the cloud parcel model. J. Geophys. Res. 119, 3352–3371
Kohler, H (1936), The nucleus and growth of hygroscopic droplets, Trans. Faraday Soc., 32, 1152–1161.
Liu, X., Gu, J., Li, Y., Cheng, Y., Qu, Y., Han, T., Wang, J., Tian, H., Chen, J., Zhang, Y., (2013). Increase of aerosol scattering by hygroscopic growth: observation, modeling, and implications on visibility. Atmos. Res. 132–133, 91–101.
Maßling, A., Wiedensohler, A., Busch, B., Neusuß, C., Quinn, P., Bates, T., Covert, D., (2003). Hygroscopic properties of different aerosol types over the Atlantic and Indian Oceans. Atmos. Chem. Phys. 3, 1377–1397.
Meyer, N. K., Duplissy, J., Gysel, M., Metzger, A., Dommen, J., Weingartner, E., Alfarra, M. R., Prevot, A.S. H., Fletcher, C., Good, N., McFiggans, G., Jonsson, A. M., Hallquist, M., Baltensperger, U., and Ristovski, Z.D. (2009): Analysis of the hygroscopic and volatile properties of ammonium sulphate seeded and unseeded SOA particles. Atmospheric. Chemistry and Physics, 9, 721–732, doi:10.5194/acp-9-721-2009.
Mikhailov E., Merkulov V, Vlasenko S., Rose D., and P¨oschl. U.,(2011). Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake. Atmos. Chem. Phys., 2011, doi:10.5194/acpd-11-30877-2011
Ogren, J.A., Charlson, R.J., (1992). Implications for models and measurements of chemical inhomogeneities among cloud droplets. Tellus B 44, 208–225.
Petters, M. and Kreidenweis, S.: (2007) A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmospheric Chemistry and Physics, 7, 1961–1971, doi:10.5194/acp-7-1961-2007,
Pruppacher, H. R. and Klett, J. D.( 2000): Microphysics of clouds and precipitation, Kluwer Academic Publishers, Dordrecht, The Netherlands.
Raymond T. M. and Pandis S. N.( 2002): Cloud activation of single-component organic aerosol particles, J. Geophys. Res., 107, 4787, doi:10.1029/2002JD002159,.
Raymond, T. M. and Pandis, S. N.( , 2003): Formation of cloud droplets by multicomponent organic Particles, J. Geophys. Res., 108, 4469, doi:10.1029/2003JD003503.
Randles , C. A. , Russell L. M. and. Ramaswamy V. (2004). Hygroscopic and optical properties of organic sea salt aerosol and consequences for climate forcing. Geophysical Research Letters, 31, L16108, doi:10.1029/2004GL020628.
Saxena, P., Hildemann L. M., McMurry P. H., and Seinfeld J. H. (1995). Organics alter hygroscopic behavior of atmospheric particles, Journal of Geophysical Research, 100(D9), 18,755–18,770.
Seinfeld, J. H. and Pandis, S. N.( 2006), Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley and Sons, Inc., New York, USA.
Solomon, S., D. Qin, M. Manning, Z. Chen, M., and Marquis, K. A., M. Tignor, and H. Miller (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Stokes, R. H. and Robinson, R. A. (1966). Interactions in aqueous nonelectrolyte solutions. I. Solute-solvent equilibria. Journal of Physical Chemistry, 70, 2126–2130.
Stock M., Y. F. Cheng, W. Birmili, A. Massling, B. Wehner, T. Muller, S. Leinert, N. Kalivitis,N. Mihalopoulos, and A. Wiedensohler, (2011). Hygroscopic properties of atmospheric aerosol particles over the Eastern Mediterranean: implications for regional direct radiative forcing under clean and polluted conditions. Atmospheric Chemistry and Physics., 11, 4251–4271, www.atmos-chem-phys.net/11/4251/2011/ doi:10.5194/acp-11-4251-2011
Swietlicki, E., Hansson, H.-C., H¨ ameri, K., Svenningsson, B., Massling, A., McFiggans, G., McMurry, P. H., Pet¨ aj ¨ a, T., Tunved, P., Gysel, M., Topping, D., Weingartner, E., Baltensperger, U., Rissler, J., Wiedensohler, A., and Kulmala, M.( 2008): Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments: a review, Tellus B, 60, 432–469,
Tang, I.N., (1996). Chemical and size effects of hygroscopic aerosols on light scattering coefficients. J. Geophys. Res. 101, 19245–19250.
Tijjani B.I., Galadanci G.S.M. Abubakar A.I. Koki F. S. Adamu I. D., Nura A. M. Saleh M., Uba S.(2015), The effect of kelvin effect on the equilibrium effective radii and hygroscopic growth of atmospheric aerosols. Journal of Natural Sciences Research,ISSN 2224-3186 (Paper) ,Vol.5, No.22,
Twomey, S.( 1977): Atmospheric Aerosols, Developments in Atmospheric Science, Elsevier, New York, USA,.
Wang, Y., Zhang, F., Li, Z., Tan, H., Xu, H., Ren, J., Zhao, J., Du, W., Sun, Y., (2017). Enhanced hydrophobicity and volatility of submicron aerosols under severe emission control conditions in Beijing. Atmos. Chem. Phys. 17, 5239–5251.
Zieger P., Fierz-Schmidhauser R. Weingartner E., and Baltensperger U. (2013), Effects of relative humidity on aerosol light scattering: results from different European sites, Atmos. Chem. Phys., 13, 10609–10631, doi:10.5194/acp-13-10609-2013.
Zhang, F., Li, Y., Li, Z., Sun, L., Li, R., Zhao, C., Wang, P., Sun, Y., Liu, X., Li, J., Li, P., Ren, Sjogren, S., Gysel, M., Weingartner, E., Baltensperger, U., Cubi-son, M. J., Coe, H., Zardini, A. A.,Marcolli, C., Krieger, U. K., and Peter, T.( 2007): Hygroscopic growth and water uptake kinetics of two-phase aerosol particles consisting of ammonium sulfate, adipic and humic acid mixtures. Journal of Aerosol Science, 38, 157–171.
Zhang, F., Wang, Y.Y., Peng, J.F., Ren, J.Y., D, C., Zhang, R.Y., Sun, Y.L., Yang, X., Li, Z.Q., (2017). Uncertainty in predicting CCN activity of aged and primary aerosols. J. Geophys. Res.: Atmosphere 122 (11) 723–711,736.
FUDMA Journal of Sciences