ANTIBIOTIC RESISTANCE GENES IN FRESHWATER ENVIRONMENT: SOURCES, FATE, ECOLOGICAL IMPACT AND CLINICAL RELEVANCE
Abstract
Global public health is seriously threatened by antibiotic resistance, making the identification of environmental reservoirs of antibiotic resistance genes (ARGs) a crucial area of study. Freshwater ecosystems are particularly important for the spread of ARGs because of the intricate interactions between diverse microbial populations, human activities, and various antibiotic contamination sources. This review aims to offer a thorough understanding of the origin, progression, environmental impact, and medical significance of ARGs in freshwater environment. ARGs enter freshwater systems through various means, including the release of treated and untreated wastewater, agricultural drainage, and discharge of antibiotics and their byproducts. Once introduced, ARGs can endure freshwater environments through processes, such as horizontal gene transfer, co-selection, and biofilm formation. Moreover, the presence of ARGs in freshwater ecosystems has significant ecological consequences, affecting microbial diversity, ecosystem functions, and biogeochemical processes. The clinical relevance of ARGs in freshwater environments is a matter of concern. These genes can be transmitted to disease-causing bacteria, resulting in treatment failure and proliferation of infections that are resistant to multiple drugs. Additionally, the potential for ARGs to contaminate drinking water supplies raises concerns regarding human health. To develop effective strategies for combating the proliferation of antibiotic resistance, it is crucial to understand the behavior of ARGs in freshwater ecosystems. This review emphasizes the necessity of enhanced wastewater treatment technologies, responsible antibiotic usage, and sustainable farming practices to decrease the release and persistence of ARGs in freshwater ecosystems, ultimately protecting public health and maintaining the ecological balance of these vital habitats.
References
Adator, E. (2020). Escherichia coli:-biofilms and the adulteration of fresh lettuce and antimicrobial resistance in a One Health Continuum.
A
denaya, A., Berger, M., Brinkhoff, T., Ribas-Ribas, M., and Wurl, O. (2023). Usage of antibiotics in aquaculture and the impact on coastal waters. Marine Pollution Bulletin, Volume 188, 114645. DOI: https://doi.org/10.1016/j.marpolbul.2023.114645
Adhikari, S., Kumar, R., Driver, E. M., Bowes, D. A., Ng, K. T., Sosa-Hernandez, J. E., and Halden, R. U. (2023). Occurrence of Z-drugs, benzodiazepines, and ketamine in wastewater in the United States and Mexico during the Covid-19 pandemic. Science of the Total Environment, Volume 857, 159351. DOI: https://doi.org/10.1016/j.scitotenv.2022.159351
Ahmed, S., Ahmed, M. Z., Rafique, S., Almasoudi, S. E., Shah, M., Jalil, N. A. C., and Ojha, S. C (2023). Recent approaches for downplaying antibiotic resistance: Molecular mechanisms. BioMed Research International, 2023. DOI: https://doi.org/10.1155/2023/5250040
Alexander, J., Hembach, N., and Schwartz, T. (2020). Evaluation of antibiotic resistance dissemination by wastewater treatment plant effluents with different catchment areas in Germany. Scientific Reports, 10(1), 8952. DOI: https://doi.org/10.1038/s41598-020-65635-4
Amarasiri, M., Sano, D., and Suzuki, S. (2020). Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered. Critical Reviews in Environmental Science and Technology, 50(19), 2016-2059.
Amarasiri, M., Sano, D., and Suzuki, S. (2020). Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered. Critical Reviews in Environmental Science and Technology, 50(19), 2016-2059.
Amato, M., Das, D., Gonzlez, A., Ferrs, M. A., and Castillo, M. . (2021). Occurrence of antibiotic resistant bacteria and resistance genes in agricultural irrigation waters from Valencia city (Spain). Agricultural Water Management, 256, 107097. DOI: https://doi.org/10.1016/j.agwat.2021.107097
Anand, U., Jacobo-Herrera, N., Altemimi, A., & Lakhssassi, N. (2019). A comprehensive review on medicinal plants as antimicrobial therapeutics: potential avenues of biocompatible drug discovery. Metabolites, 9(11), 258. DOI: https://doi.org/10.3390/metabo9110258
Bai, Y., Ruan, X., Li, R., Zhang, Y., and Wang, Z. (2021). Metagenomics-based antibiotic resistance genes diversity and prevalence risk revealed by pathogenic bacterial host in Taihu Lake, China. Environmental Geochemistry and Health, 1-13. DOI: https://doi.org/10.1007/s10653-021-01021-x
Cabello, F. C., and Godfrey, H. P. (2019). Salmon aquaculture, Piscirickettsia salmonis virulence, and One Health: Dealing with harmful synergies between heavy antimicrobial use and piscine and human health. Aquaculture, 507, 451-456. DOI: https://doi.org/10.1016/j.aquaculture.2019.04.048
Cai, Y., Liu, J., Li, G., Wong, P. K., and An, T. (2022). Formation mechanisms of viable but nonculturable bacteria through induction by light-based disinfection and their antibiotic resistance gene transfer risk: A review. Critical Reviews in Environmental Science and Technology, 52(20), 3651-3688. DOI: https://doi.org/10.1080/10643389.2021.1932397
Chen, B., Lin, L., Fang, L., Yang, Y., Chen, E., Yuan, K., and Luan, T. (2018). Complex pollution of antibiotic resistance genes due to beta-lactam and aminoglycoside use in aquaculture farming. Water research, 134, 200-208 DOI: https://doi.org/10.1016/j.watres.2018.02.003
Chen, H., Bai, X., Jing, L., Chen, R., and Teng, Y. (2019). Characterization of antibiotic resistance genes in the sediments of an urban river revealed by comparative metagenomics analysis. Science of The Total Environment, 653, 1513-1521 DOI: https://doi.org/10.1016/j.scitotenv.2018.11.052
Chen, H., Li, Y., Sun, W., Song, L., Zuo, R., and Teng, Y. (2020). Characterization and source identification of antibiotic resistance genes in the sediments of an interconnected river-lake system. Environment international, 137, 105538. DOI: https://doi.org/10.1016/j.envint.2020.105538
Chen, Haiyang, Chang Liu, Yanguo Teng, Zulin Zhang, Yihan Chen, and Yuyi Yang. (2021) "Environmental risk characterization and ecological process determination of bacterial antibiotic resistome in lake sediments." Environment International 147): 106345. DOI: https://doi.org/10.1016/j.envint.2020.106345
Chen, J., Li, J., Zhang, H., Shi, W., and Liu, Y. (2019). Bacterial heavy-metal and antibiotic resistance genes in a copper tailing dam area in northern China. Frontiers in microbiology, 10, 1916. DOI: https://doi.org/10.3389/fmicb.2019.01916
Collaborators, A. R. (2022). Articles Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. 399..
Conco, T., Kumari, S., Awolusi, O. O., Allam, M., Ismail, A., Stenstrm, T. A., and Bux, F. (2022). Profiling of emerging pathogens, antibiotic resistance genes and mobile genetic elements in different biological wastewater treatment plants. Journal of Environmental Chemical Engineering, 10(3), 107596. DOI: https://doi.org/10.1016/j.jece.2022.107596
Dadgostar, P. (2019). Antimicrobial resistance: implications and costs. Infection and drug resistance, 3903-3910. DOI: https://doi.org/10.2147/IDR.S234610
Dang, C., Liu, S., Chen, Q., Sun, W., Zhong, H., Hu, J., ... and Ni, J. (2021). Response of microbial nitrogen transformation processes to antibiotic stress in a drinking water reservoir. Science of The Total Environment, 797, 149119. DOI: https://doi.org/10.1016/j.scitotenv.2021.149119
Koutsoumanis, K., Allende, A., lvarezOrdez, A., Bolton, D., BoverCid, S., and Peixe, L. (2021). EFSA Panel on Biological Hazards (BIOHAZ), Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA Journal, 19(6), e06651. DOI: https://doi.org/10.2903/j.efsa.2021.6651
European Food Safety Authority, and European Centre for Disease Prevention and Control. (2021). The European Union one health 2019 zoonoses report. Efsa Journal, 19(2), e06406. DOI: https://doi.org/10.2903/j.efsa.2021.6406
Ferri, G., Lauteri, C., and Vergara, A. (2022). Antibiotic Resistance in the Finfish Aquaculture Industry: A Review. Antibiotics, 11(11), 1574. DOI: https://doi.org/10.3390/antibiotics11111574
Flores-Vargas, G., Bergsveinson, J., Lawrence, J. R., and Korber, D. R. (2021). Environmental Biofilms as Reservoirs for Antimicrobial Resistance. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.766242 DOI: https://doi.org/10.3389/fmicb.2021.766242
Gao, H., Zhang, L., Lu, Z., He, C., Li, Q., and Na, G. (2018). Complex migration of antibiotic resistance in natural aquatic environments. Environmental Pollution, 232, 1-9. DOI: https://doi.org/10.1016/j.envpol.2017.08.078
Gao, Y.-X., Li, X., Fan, X.-Y., Zhao, J.-R., and Zhang, Z.-X. (2022). Wastewater treatment plants as reservoirs and sources for antibiotic resistance genes: A review on occurrence, transmission and removal., Journal of Water Process Engineering, 46, 102539. DOI: https://doi.org/10.1016/j.jwpe.2021.102539
Gillings, M.R.,Holmes, A.J., Nield, B.S.,Mabbutt, B.C.,Stokes, H.W.,Holley, M.P.,Stokes, H.W., Paulsen I.T (2021). Antibiotic resistance in the environment. PubMed.
Gu, J., Zhang, L., Wang, X., Lu, C., Liu, J., Liu, Y., ... and Xue, M. (2019). High-throughput analysis of the effects of different fish culture methods on antibiotic resistance gene abundances in a lake. Environmental Science and Pollution Research, 26, 5445-5453. DOI: https://doi.org/10.1007/s11356-018-3972-0
Guo, X., Tang, N., Lei, H., Fang, Q., Liu, L., Zhou, Q., and Song, C. (2021). Metagenomic analysis of antibiotic resistance genes in untreated wastewater from three different hospitals. Frontiers in Microbiology, 12, 709051 DOI: https://doi.org/10.3389/fmicb.2021.709051
Guo, Z. F., Boeing, W. J., Xu, Y. Y., Borgomeo, E., Liu, D., and Zhu, Y. G. (2023). Data-driven discoveries on widespread contamination of freshwater reservoirs by dominant antibiotic resistance genes. Water Research, 229, 119466.
Guo, Z. F., Boeing, W. J., Xu, Y. Y., Borgomeo, E., Liu, D., and Zhu, Y. G. (2023). Data-driven discoveries on widespread contamination of freshwater reservoirs by dominant antibiotic resistance genes. Water Research, 229, 119466.
Han, M., Zhang, L., Zhang, N., Mao, Y., Peng, Z., Huang, B., ... and Wang, Z. (2022). Antibiotic resistome in a large urban-lake drinking water source in middle China: dissemination mechanisms and risk assessment. Journal of Hazardous Materials, 424, 127745. DOI: https://doi.org/10.1016/j.jhazmat.2021.127745
Health (US), Centers for Disease Control, Prevention (US), and Human Services Dept (US) (Eds.). (2018). NIOSH criteria for a recommended standard: occupational exposure to heat and hot environments. National Institute on Drug Abuse.
Hendriksen, R. S., Bortolaia, V., Tate, H., Tyson, G. H., Aarestrup, F. M., and McDermott, P. F. (2019). Using genomics to track global antimicrobial resistance. Frontiers in public health, 7, 242. DOI: https://doi.org/10.3389/fpubh.2019.00242
Hernando-Amado, S., Coque, T. M., Baquero, F., and Martnez, J. L. (2020). Antibiotic resistance: moving from individual health norms to social norms in one health and global health. Frontiers in Microbiology, 11, 1914. DOI: https://doi.org/10.3389/fmicb.2020.01914
Henriot, C. P., Martak, D., Dagot, C., Petit, F., Topp, E., Bertrand, X., ... & Hocquet, D. (2021). The fate of antibiotic-resistant bacteria in the environment. Emerging Contaminants Vol. 1: Occurrence and Impact, 207-260. DOI: https://doi.org/10.1007/978-3-030-69079-3_4
Hooban, B., Fitzhenry, K., Cahill, N., Joyce, A., O'Connor, L., Bray, J. E., and Morris, D. (2021). A point prevalence survey of antibiotic resistance in the Irish environment, 20182019. Environment International, 152, 106466. DOI: https://doi.org/10.1016/j.envint.2021.106466
Hooban, B., Joyce, A., Fitzhenry, K., Chique, C., and Morris, D. (2020). The role of the natural aquatic environment in the dissemination of extended spectrum beta-lactamase and carbapenemase encoding genes: a scoping review. Water Research, 180, 115880. DOI: https://doi.org/10.1016/j.watres.2020.115880
Huang, H., Zeng, S., Dong, X., Li, D., Zhang, Y., He, M., and Du, P. (2019). Diverse and abundant antibiotics and antibiotic resistance genes in an urban water system. Journal of environmental management, 231, 494-503. DOI: https://doi.org/10.1016/j.jenvman.2018.10.051
Jeon, J. H., Jang, K.-M., Lee, J. H., Kang, L.-W., and Lee, S. H. (2023). Transmission of antibiotic resistance genes through mobile genetic elements in Acinetobacter baumannii and gene-transfer prevention. Science of The Total Environment, 857(Part2), 159497. https://doi.org/10.1016/j.scitotenv.2022.159497. DOI: https://doi.org/10.1016/j.scitotenv.2022.159497
Jian, Z., Zeng, L., Xu, T., Sun, S., Yan, S., Yang, L., ... & Dou, T. (2021). Antibiotic resistance genes in bacteria: Occurrence, spread, and control. Journal of Basic Microbiology, 61(12), 1049-1070. DOI: https://doi.org/10.1002/jobm.202100201
Keenum, I., Liguori, K., Calarco, J., Davis, B. C., Milligan, E., Harwood, V. J., and Pruden, A. (2022). A framework for standardized qPCR-targets and protocols for quantifying antibiotic resistance in surface water, recycled water and wastewater. Critical Reviews in Environmental Science and Technology, 52(24), 4395-4419. DOI: https://doi.org/10.1080/10643389.2021.2024739
Kumar, A., and Pal, D. (2018). Antibiotic resistance and wastewater: Correlation, impact and critical human health challenges. Journal of environmental chemical engineering, 6(1), 52-58. DOI: https://doi.org/10.1016/j.jece.2017.11.059
Larsson, D. G., and Flach, C.-F. (2021). Antibiotic resistance in the environment. Nature Reviews Microbiology, 20(4), 257269. DOI: https://doi.org/10.1038/s41579-021-00649-x
Lee, J., Ju, F., Maile-Moskowitz, A., Beck, K., Maccagnan, A., McArdell, C. S., ... and Brgmann, H. (2021). Unraveling the riverine antibiotic resistome: the downstream fate of anthropogenic inputs. Water research, 197, 117050. DOI: https://doi.org/10.1016/j.watres.2021.117050
Leff, L. G., Fasina, K., and Engohang-Ndong, J. (2023). Detecting antibiotic resistance genes in anthropogenically impacted streams and rivers. Current Opinion in Biotechnology, 79, 102878. https://doi.org/10.1016/j.copbio.2022.102878 DOI: https://doi.org/10.1016/j.copbio.2022.102878
Li, N., Chen, J., Liu, C., Yang, J., Zhu, C., and Li, H. (2022). Cu and Zn exert a greater influence on antibiotic resistance and its transfer than doxycycline in agricultural soils. Journal of Hazardous Materials, 423, 127042. DOI: https://doi.org/10.1016/j.jhazmat.2021.127042
Li, W., Yang, Z., Hu, J., Wang, B., Rong, H., Li, Z., ... and Xu, H. (2022). Evaluation of culturable last-resortantibiotic resistant pathogens in hospital wastewater and implications on the risks of nosocomial antimicrobial resistance prevalence. Journal of Hazardous Materials, 438, 129477. DOI: https://doi.org/10.1016/j.jhazmat.2022.129477
Li, Z., Wang, M., Fang, H., Yao, Z., Liu, H., Zhao, W., and Chen, J. (2023). Solid-liquid interface adsorption of antibiotic resistance plasmids induced by nanoplastics aggravates gene pollution in aquatic ecosystems. Environmental Pollution, 316, 120456. DOI: https://doi.org/10.1016/j.envpol.2022.120456
Liguori, K., Keenum, I., Davis, B. C., Calarco, J., Milligan, E., Harwood, V. J., and Pruden, A. (2022). Antimicrobial resistance monitoring of water environments: a framework for standardized methods and quality control. Environmental science and technology, 56(13), 9149-9160. DOI: https://doi.org/10.1021/acs.est.1c08918
Liu, Y., Tong, Z., Shi, J., Jia, Y., Yang, K., & Wang, Z. (2020). Correlation between exogenous compounds and the horizontal transfer of plasmid-borne antibiotic resistance genes. Microorganisms, 8(8), 1211. DOI: https://doi.org/10.3390/microorganisms8081211
Liu, S., Wang, P., Wang, X., and Chen, J. (2021). Ecological insights into the elevational biogeography of antibiotic resistance genes in a pristine river: metagenomic analysis along the Yarlung Tsangpo River on the Tibetan Plateau. Environmental Pollution, 286, 117101. DOI: https://doi.org/10.1016/j.envpol.2021.117101
Liu, X., Zhu, W., Yang, Z., Yang, Y., and Li, H. (2022). Efficient ozone catalysis by manganese iron oxides/activated carbon for sulfamerazine degradation. Journal of Water Process Engineering, 49, 103050. DOI: https://doi.org/10.1016/j.jwpe.2022.103050
Meyers, M. A., Durso, L. M., Gilley, J. E., Miller, D. N., Li, X., and Schmidt, A. M. (2020). Setback distance impacts on transport and antibiotic resistance phenotypes of fecal indicators. Agrosystems, Geosciences and Environment, 3(1), e20081. DOI: https://doi.org/10.1002/agg2.20081
Miao, L., Guo, S., Wu, J., Adyel, T. M., Liu, Z., Liu, S., and Hou, J. (2022). Polystyrene nanoplastics change the functional traits of biofilm communities in freshwater environment revealed by GeoChip 5.0. Journal of Hazardous Materials, 423, 127117. DOI: https://doi.org/10.1016/j.jhazmat.2021.127117
Miller, M. A., Moriarty, M. E., Henkel, L., Tinker, M. T., Burgess, T. L., Batac, F. I., ... and Johnson, C. K. (2020). Predators, disease, and environmental change in the nearshore ecosystem: mortality in southern sea otters (Enhydra lutris nereis) from 19982012. Frontiers in Marine Science, 7, 582. DOI: https://doi.org/10.3389/fmars.2020.00582
Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., ... and Tasak, N.(2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet, 399(10325), 629-655. DOI: https://doi.org/10.1016/S0140-6736(21)02724-0
Nappier, S. P., Liguori, K., Ichida, A. M., Stewart, J. R., and Jones, K. R. (2020). Antibiotic resistance in recreational waters: state of the science. International Journal of Environmental Research and Public Health, 17(21), 8034. DOI: https://doi.org/10.3390/ijerph17218034
Nava, A. R., Daneshian, L., Sarma, H., and Verma, S. (2022). Antibiotic resistant genes in the environment-exploring surveillance methods and sustainable remediation strategies of antibiotics and ARGs. Environmental Research, 215(Part 1), 114212. DOI: https://doi.org/10.1016/j.envres.2022.114212
Nguyen, A. Q., Vu, H. P., Nguyen, L. N., Wang, Q., Djordjevic, S. P., Donner, E., Yin, H., and Nghiem, L. D. (2021). Monitoring antibiotic resistance genes in wastewater treatment: Current strategies and future challenges. Science of The Total Environment, 783 DOI: https://doi.org/10.1016/j.scitotenv.2021.146964
Nicolaou, K. C., & Rigol, S. (2018). A brief history of antibiotics and select advances in their synthesis. The Journal of antibiotics, 71(2), 153-184. DOI: https://doi.org/10.1038/ja.2017.62
Ning, K., Ji, L., Zhang, L., Zhu, X., Wei, H., Han, M., and Wang, Z. (2022). rice-crayfish co-culture a better aquaculture model: From the perspective of antibiotic resistome profiles. Environmental Pollution, 292, 118450. DOI: https://doi.org/10.1016/j.envpol.2021.118450
Niu, A., Song, L. Y., Xiong, Y. H., Lu, C. J., Junaid, M., and Pei, D. S. (2019). Impact of water quality on the microbial diversity in the surface water along the Three Gorge Reservoir (TGR), China. Ecotoxicology and environmental safety, 181, 412-418. DOI: https://doi.org/10.1016/j.ecoenv.2019.06.023
Nnadozie, C. F., and Odume, O. N. (2019). Freshwater environments as reservoirs of antibiotic resistant bacteria and their role in the dissemination of antibiotic resistance genes. Environmental Pollution, 254, 113067. DOI: https://doi.org/10.1016/j.envpol.2019.113067
Ohore, O. E., Wei, Y., Wang, Y., Nwankwegu, A. S., and Wang, Z. (2022). Tracking the influence of antibiotics, antibiotic resistomes, and salinity gradient in modulating microbial community assemblage of surface water and the ecological consequences. Chemosphere, 305, 135428. DOI: https://doi.org/10.1016/j.chemosphere.2022.135428
Ondon, B. S., Li, S., Zhou, Q., and Li, F. (2021). Sources of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the soil: a review of the spreading mechanism and human health risks. Reviews of Environmental Contamination and Toxicology Volume 256, 121-153. DOI: https://doi.org/10.1007/398_2020_60
Osiska, A., Korzeniewska, E., Harnisz, M., Felis, E., Bajkacz, S., Jachimowicz, P., ... and Konopka, I.(2020). Small-scale wastewater treatment plants as a source of the dissemination of antibiotic resistance genes in the aquatic environment. Journal of hazardous materials, 381, 121221. DOI: https://doi.org/10.1016/j.jhazmat.2019.121221
Pan, M., and Chu, L. M. (2018). Occurrence of antibiotics and antibiotic resistance genes in soils from wastewater irrigation areas in the Pearl River Delta region, southern China. Science of the total environment, 624, 145-152. DOI: https://doi.org/10.1016/j.scitotenv.2017.12.008
Partridge, S. R., Kwong, S. M., Firth, N., and Jensen, S. O. (2018). Mobile Genetic Elements Associated with Antimicrobial Resistance. Clinical Microbiology Reviews, 31(4), e00088-17. https://doi.org/10.1128/CMR.00088-17 DOI: https://doi.org/10.1128/CMR.00088-17
Qin, Z., Zhao, Z., Xia, L., and Ohore, O. E. (2022). Research trends and hotspots of aquatic biofilms in freshwater environment during the last three decades: a critical review and bibliometric analysis. Environmental Science and Pollution Research, 29(32), 47915-47930. DOI: https://doi.org/10.1007/s11356-022-20238-6
Rahman, M. M., Shan, J., Yang, P., Shang, X., Xia, Y., and Yan, X. (2018). Effects of long-term pig manure application on antibiotics, abundance of antibiotic resistance genes (ARGs), anammox and denitrification rates in paddy soils. Environmental Pollution, 240, 368-377. DOI: https://doi.org/10.1016/j.envpol.2018.04.135
Raza, S., Jo, H., Kim, J., Shin, H., Hur, H. G., and Unno, T. (2021). Metagenomic exploration of antibiotic resistome in treated wastewater effluents and their receiving water. Science of The Total Environment, 765, 142755. DOI: https://doi.org/10.1016/j.scitotenv.2020.142755
Rousham, E. K., Asaduzzaman, M., Mozmader, T. A. U., Amin, M. B., Rahman, M., Hossain, M. I., and Islam, M. A. (2021). Human colonization with extended-spectrum beta-lactamase-producing E. coli in relation to animal and environmental exposures in Bangladesh: an observational one health study. Environmental health perspectives, 129(3), 037001. DOI: https://doi.org/10.1289/EHP7670
Shao, S., Hu, Y., Cheng, J., and Chen, Y. (2018). Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment. Critical reviews in biotechnology, 38(8), 1195-1208. DOI: https://doi.org/10.1080/07388551.2018.1471038
Shi, X., Xia, Y., Wei, W., and Ni, B. J. (2022). Accelerated spread of antibiotic resistance genes (ARGs) induced by non-antibiotic conditions: roles and mechanisms. Water Research, 119060. DOI: https://doi.org/10.1016/j.watres.2022.119060
Singh, A. K., Kaur, R., Verma, S., and Singh, S. (2022). Antimicrobials and Antibiotic Resistance Genes in Water Bodies: Pollution, Risk, and Control. Frontiers in Environmental Science, 10. DOI: https://doi.org/10.3389/fenvs.2022.830861
Sirichokchatchawan, W., Apiwatsiri, P., Pupa, P., Saenkankam, I., Khine, N. O., Lekagul, A., ... and Prapasarakul, N. (2021). Reducing the risk of transmission of critical antimicrobial resistance determinants from contaminated pork products to humans in south-east Asia. Frontiers in Microbiology, 12, 689015. DOI: https://doi.org/10.3389/fmicb.2021.689015
Sorinolu, A. J., and Munir, M. (2022). Degradation and horizontal gene transfer analysis of plasmid-encoded antibiotic resistance genes during UV254, hydroxyl radical and sulphate radical treatments. Chemical Engineering Journal, 450, 138380. DOI: https://doi.org/10.1016/j.cej.2022.138380
Sun, J., Jin, L., He, T., Wei, Z., Liu, X., Zhu, L., and Li, X. (2020). Antibiotic resistance genes (ARGs) in agricultural soils from the Yangtze River Delta, China. Science of The Total Environment, 740, 140001. DOI: https://doi.org/10.1016/j.scitotenv.2020.140001
Sutradhar, I., Ching, C., Desai, D., Heins, Z., Khalil, A. S., and Zaman, M. H. (2023). Effects of antibiotic interaction on antimicrobial resistance development in wastewater. Scientific Reports, 13(1), 7801. https://doi.org/10.1038/s41598-023-34935-w . DOI: https://doi.org/10.1038/s41598-023-34935-w
Tacconelli, E., Mazzaferri, F., de Smet, A. M., Bragantini, D., Eggimann, P., Huttner, B. D., and Rodrguez-Bao, J. (2019). ESCMID-EUCIC clinical guidelines on decolonization of multidrug-resistant Gram-negative bacteria carriers. Clinical microbiology and infection, 25(7), 807-817. DOI: https://doi.org/10.1016/j.cmi.2019.01.005
Ur Rahman, S., & Mohsin, M. (2019). The under reported issue of antibiotic-resistance in food-producing animals in Pakistan. Pak. Vet. J, 1, 1-16.
Wang M., You X.-Y.(2023) Efficient adsorption of antibiotics and heavy metals from aqueous solution by structural designed PSSMA-functionalized-chitosan magnetic composite. Chem. Eng. J. (;454:140417. https://doi.org/10.1016/j.cej.2022.14041 DOI: https://doi.org/10.1016/j.cej.2022.140417
Wang, J., Chu, L., Wojnrovits, L., Takcs,E. (2020). Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: An overview. Science of The Total Environment Volume 744, 140997 Elsevier DOI: https://doi.org/10.1016/j.scitotenv.2020.140997
Wang, Q., Wei, S., Silva, A. F., and Madsen, J. S. (2023). Cooperative antibiotic resistance facilitates horizontal gene transfer. The ISME Journal, 1-9. DOI: https://doi.org/10.1038/s41396-023-01393-1
Wang, Y., Lu, S., Liu, X., Chen, J., Han, M., Wang, Z., and Guo, W. (2021). Profiles of antibiotic resistance genes in an inland salt-lake Ebinur Lake, Xinjiang, China: The relationship with antibiotics, environmental factors, and microbial communities. Ecotoxicology and Environmental Safety, 221, 112427. DOI: https://doi.org/10.1016/j.ecoenv.2021.112427
Wu, Y., Yan, H., Zhu, X., Liu, C., Chu, C., Zhu, X., and Chen, B. (2022). Biochar Effectively Inhibits the Horizontal Transfer of Antibiotic Resistance Genes via Restraining the Energy Supply for Conjugative Plasmid Transfer. Environmental Science and Technology, 56(17), 12573-12583. DOI: https://doi.org/10.1021/acs.est.2c02701
Wyres, K. L., Hawkey, J., Hetland, M. A., Fostervold, A., Wick, R. R., Judd, L. M., ... and Holt, K. E. (2019). Emergence and rapid global dissemination of CTX-M-15-associated Klebsiella pneumoniae strain ST307. Journal of Antimicrobial Chemotherapy, 74(3), 577-581. DOI: https://doi.org/10.1093/jac/dky492
Xu, Y., Guo, C., Luo, Y., Lv, J., Zhang, Y., Lin, H., ... and Xu, J. (2016). Occurrence and distribution of antibiotics, antibiotic resistance genes in the urban rivers in Beijing, China. Environmental pollution, 213, 833-840. DOI: https://doi.org/10.1016/j.envpol.2016.03.054
Young, C. C., Karmacharya, D., Bista, M., Sharma, A. N., Goldstein, T., Mazet, J. A., and Johnson, C. K. (2022). Antibiotic resistance genes of public health importance in livestock and humans in an informal urban community in Nepal., Scientific reports, 12(1), 13808. DOI: https://doi.org/10.1038/s41598-022-14781-y
Yu, Q., Feng, T., Yang, J., Su, W., Zhou, R., Wang, Y., and Li, H. (2022). Seasonal distribution of antibiotic resistance genes in the Yellow River water and tap water, and their potential transmission from water to human. Environmental Pollution, 292, 118304. DOI: https://doi.org/10.1016/j.envpol.2021.118304
Yu, Y., Zhang, Z., Zhang, Q., Xu, N., Lu, T., Penuelas, J., and Qian, H. (2022). Protists, Unexpected Players in Waterborne Antibiotic Resistance?. Reviews of Environmental Contamination and Toxicology, 260(1), 19. DOI: https://doi.org/10.1007/s44169-022-00017-7
Zhang Z., Zhang Q., Wang T., Xu N., Lu T., Hong W., Penuelas J., Gillings M., Wang M., Gao W., and Qian H. (2022). Assessment of global health risk of antibiotic resistance genes. Nature Communications ,13(1553). https://www.nature.com/articles/s41467-022-29283-8
Zhang, H., He, H., Chen, S., Huang, T., Lu, K., Zhang, Z., ... and Li, H. (2019). Abundance of antibiotic resistance genes and their association with bacterial communities in activated sludge of wastewater treatment plants: Geographical distribution and network analysis. Journal of Environmental Sciences, 82, 24-38. DOI: https://doi.org/10.1016/j.jes.2019.02.023
Zhang, L., Zhang, C., Lian, K., and Liu, C. (2021). Effects of chronic exposure of antibiotics on microbial community structure and functions in hyporheic zone sediments. Journal of Hazardous Materials, 416, 126141. DOI: https://doi.org/10.1016/j.jhazmat.2021.126141
Zhang, M., Li, W., Zhang, W., Li, Y., Li, J., and Gao, Y. (2021). Agricultural land-use change exacerbates the dissemination of antibiotic resistance genes via surface runoffs in Lake Tai Basin, China. Ecotoxicology and Environmental Safety, 220, 112328. https://doi.org/10.1016/j.ecoenv.2021.112328.
Zhang, M., Li, W., Zhang, W., Li, Y., Li, J., and Gao, Y. (2021). Agricultural land-use change exacerbates the dissemination of antibiotic resistance genes via surface runoffs in Lake Tai Basin, China. Ecotoxicology and Environmental Safety, 220, 112328. https://doi.org/10.1016/j.ecoenv.2021.112328 . DOI: https://doi.org/10.1016/j.ecoenv.2021.112328
Zhang, S., Huang, J., Zhao, Z., Cao, Y., and Li, B. (2020). Hospital Wastewater as a Reservoir for Antibiotic Resistance Genes: A Meta-Analysis. Frontiers in Public Health, 8. https://doi.org/10.3389/fpubh.2020.574968 . DOI: https://doi.org/10.3389/fpubh.2020.574968
Zhang, Y.-J., Li, X., and Graham, D. W. (2020). Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered. Critical Reviews in Environmental Science and Technology, 50(19), 20162059. https://doi.org/10.1080/10643389.2019.1692611 DOI: https://doi.org/10.1080/10643389.2019.1692611
Zhang, Z., Zhang, Q., Wang, T., Xu, N., Lu, T., Hong, W., and Qian, H. (2022). Assessment of global health risk of antibiotic resistance genes. Nature communications, 13(1), 1553. DOI: https://doi.org/10.1038/s41467-022-29283-8
Zhao, R., Feng, J., Huang, J., Li, X., and Li, B. (2021). Reponses of microbial community and antibiotic resistance genes to the selection pressures of ampicillin, cephalexin and chloramphenicol in activated sludge reactors. Science of the Total Environment, 755, 142632. DOI: https://doi.org/10.1016/j.scitotenv.2020.142632
Zhao-Feng, Boeing, W. J., Yao-Yang, Borgomeo, E., and Yong-Guan. (2023). Data-driven discoveries on widespread contamination of freshwater reservoirs by dominant antibiotic resistance genes. Water Research, 229, 119466. DOI: https://doi.org/10.1016/j.watres.2022.119466
Copyright (c) 2024 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences