MOLECULAR DYNAMICS SIMULATION OF COHESIVE ENERGIES AND ITS CORRESPONDING LATTICE PARAMETER OF SOME NANOCRYSTALS

  • Yusuf Tajuddeen Batsari
  • Isaiah Eze Igwe
  • Ahmed Hamisu
Keywords: cohesive energy, lattice parameter, nanocrystals, molecular dynamics

Abstract

Bulk solids have a microstructure that differs significantly from nanoscale materials. In modern era, new devices are always produced at nano-scale level and existing ones are quantized to fit the global demand. To achieve this, there is a need to understand the behaviour of materials at atomic level. As a result, examining the properties of nanoparticles can help in understanding the nature of small-scale material behavior. The cohesive energy and lattice constant are essential physical quantities that can be used to predict other material properties. In this research, the equilibrium cohesive energies and its corresponding lattice constants of three nanosized crystals (Al, Cu and Ni), were investigated using molecular dynamics simulation method with a semi-empirical embedded atom model (EAM) potential function. The simulated results reveal that the three nanocrystals’ lattice constant match the experimental data. Besides, Al, Cu and Ni have cohesive energies of -3.40 eV, -3.55 eV, -4.44 eV respectively. Cu’s cohesive energy differs from experimental data unlike Al and Ni. The findings in the current research are in good agreement with those obtained utilizing the First principle calculation method.

References

Daw, M. S., & Baskes, M. I. (1983). Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals. Phys Rev Lett, 50(17), 1285-1288. doi:10.1103/PhysRevLett.50.1285

Frenkel, D., & Smit, B. (2002). Chapter 6 - Molecular Dynamics in Various Ensembles. In D. Frenkel & B. Smit (Eds.), Understanding Molecular Simulation (Second Edition) (pp. 139-163). San Diego: Academic Press.

Fitriana Faizatu Zahroh. Iwan Sugihartono and Ernik D. Safitri (2019) Young’s Modulus Calculation of Some Metals Using Molecular Dynamics Method Based on the Morse Potential

Goswami, G. K., & Nanda, K. K. (2010). Size-Dependent Melting of Finite-Length Nanowires. The Journal of Physical Chemistry C, 114(34), 14327-14331. doi:10.1021/jp100820c

Kim, H. K., Huh, S. H., Park, J. W., Jeong, J. W., & Lee, G. H. (2002). The cluster size dependence of thermal stabilities of both molybdenum and tungsten nanoclusters. Chemical Physics Letters, 354(1), 165-172. https://doi.org/10.1016/S0009-2614(02)00146-X

Li, X. (2014). Modeling the size- and shape-dependent cohesive energy of nanomaterials and its applications in heterogeneous systems. Nanotechnology, 25(18), 185702. doi:10.1088/0957-4484/25/18/185702

Murray S. Daw A, Stephen, M. Foiles A. and Michael I. Baskes (1992) the embedded-atom method: a review of theory and applications

Ouyang, G., Wang, C. X., & Yang, G. W. (2009). Surface Energy of Nanostructural Materials with Negative Curvature and Related Size Effects. Chemical Reviews, 109(9), 4221-4247. doi:10.1021/cr900055f
Qi, W. (2016). Nanoscopic Thermodynamics. Acc Chem Res, 49(9), 1587-1595. doi:10.1021/acs.accounts.6b00205

Safaei, A. (2010a). The effect of the averaged structural and energetic features on the cohesive energy of nanocrystals. Journal of Nanoparticle Research, 12(3), 759-776.

Safaei, A. (2010b). Shape, structural, and energetic effects on the cohesive energy and melting point of nanocrystals. The Journal of Physical Chemistry C, 114(32), 13482-13496.

Safaei, A., Shandiz, M. A., Sanjabi, S., & Barber, Z. H. (2008). Modeling the Melting Temperature of Nanoparticles by an Analytical Approach. The Journal of Physical Chemistry C, 112(1), 99-105. doi:10.1021/jp0744681

Scott A. Hollingsworth and Ron O. Dror (2018). Molecular Dynamics Simulation for All https://doi.org/10.1016/j.neuron.2018.08.011

Verma, A. S., Sarkar, B. K., & Jindal, V. K. (2010). Cohesive energy of zincblende (AIIIBV and AIIBVI) structured solids. Pramana, 74(5), 851-855. doi:10.1007/s12043-010-0105-9

Wang, C. X., & Yang, G. W. (2005). Thermodynamics of metastable phase nucleation at the nanoscale. Materials Science and Engineering: R: Reports, 49(6), 157-202. doi:https://doi.org/10.1016/j.mser.2005.06.002

Wang, T., Zhu, Y., & Jiang, Q. (2008). Size effect on evaporation temperature of nanocrystals. Materials Chemistry and Physics, 111(2-3), 293-295.

Weihong Qi - Wang M . P. (2002). Size effect on the cohesive energy of nanoparticle. Journal of Material Science Letter 21(22):1743-1745. http://doi.org/10.1023/A:1020904317133

Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., . . . Yan, H. (2003). One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Advanced Materials, 15(5), 353-389. doi:https://doi.org/10.1002/adma.200390087

Xie, D., Wang, M. P., & Cao, L. F. (2005). Comment on “Size effect on the cohesive energy of nanoparticle”—Extending the model available for embedded nanoparticle. Journal of Materials Science, 40(13), 3567-3568. doi:10.1007/s10853-005-2886-7

Xie, D., Wang, M. P., & Qi, W. H. (2004). A simplified model to calculate the surface-to-volume atomic ratio dependent cohesive energy of nanocrystals. Journal of Physics: Condensed Matter, 16(36), L401-L405. doi:10.1088/0953-8984/16/36/l01

Yang, C. C., & Li, S. (2007). Investigation of cohesive energy effects on size-dependent physical and chemical properties of nanocrystals. Physical Review B, 75(16), 165413.

Yin, F., Palmer, R., & Guo, Q. (2006). Nanoscale surface recrystallization driven by localized electric field. Physical Review B, 73(7), 073405. doi:10.1103/PhysRevB.73.073405
Published
2022-05-18
How to Cite
Batsari, Y. T., Igwe, I. E., & Hamisu, A. (2022). MOLECULAR DYNAMICS SIMULATION OF COHESIVE ENERGIES AND ITS CORRESPONDING LATTICE PARAMETER OF SOME NANOCRYSTALS. FUDMA JOURNAL OF SCIENCES, 6(2), 175 - 179. https://doi.org/10.33003/fjs-2022-0602-937