THE IMPORTANCE OF FILM THICKNESS ON THE PHOTOVOLTAIC PERFORMANCE OF PEROVSKITE SOLAR CELLS

  • Dahiru M. Sanni
  • Emmanuel Joseph
  • Muhammad Aminu Adamu
Keywords: Film thickness, perovskite solar cells, spin-coating rate

Abstract

In this study, we investigated the role of film thickness on the photovoltaic performance of perovskite solar cells (PSCs) fabricated from dehydrated lead acetate as the source material. The inverted p-i-n planar heterojunction architecture was adopted in this work. One step spin-coating methods were used in depositing the perovskite solution before annealing on a hot plate at 90 oC for 5 minutes to form the perovskite film. We varied the film thickness by varying the spin-coating rate from 2000 to 6000 rpm for 60 seconds and the optimal film thickness was obtained at 4000 rpm corresponding to 400 nm. This gave the best power conversion efficiency (PCE) of 11.61%, Open circuit voltage (Voc) of 0.909 V, short circuit photocurrent density (Jsc) of 20.41 mA/cm2 and fill factor (FF) of 62.56%. Our investigations revealed that film thickness has great influence in the photovoltaic performance of PSCs.

References

Aldibaja, Fadi Kamal Badia, Laura Mas-Marzá, Elena Sánchez, Rafael S. Barea, Eva M. Mora-Sero, I. (2015). Effect of different lead precursors on perovskite solar cell performance and stability. J. Mater. Chem. A, 3(17), 9194–9200. https://doi.org/10.1039/C4TA06198E

Andrei Buin, Patrick Pietsch, Oleksandr Voznyy, R., & Comin, Alexander H Ip, Edward H. Sargent, and B. X. (2014). Materials Processing Routes to Trap-free Halide Perovskites. Nano Letters, 1–24. https://doi.org/10.1021/nl502612m

Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Research Letter, 1–5. https://doi.org/10.1038/nature12340

Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H.-S., Wang, H.-H., … Yang, Y. (2013). Planar heterojunction perovskite solar cells via vapor-assisted solution process. Journal of the American Chemical Society, 136(2), 622–625.

Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H., Wang, H., … Yang, Y. (2014). Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society, 136(2)(Scheme 1), 3–6. https://doi.org/10.1021/ja411509g

Chen, Y., Yerramilli, A., Shen, Y., Zhao, Z., & Alford, T. (2018). Effect of excessive Pb content in the precursor solutions on the properties of the lead acetate derived CH3NH3PbI3 perovskite solar cells. Solar Energy Materials and Solar Cells, 174(June 2017), 478–484. https://doi.org/10.1016/j.solmat.2017.09.039

Docampo, P., Ball, J. M., Darwich, M., Eperon, G. E., & Snaith, H. J. (2013). Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nature Communications, 4file:///C, 1–6. https://doi.org/10.1038/ncomms3761

Etgar, L., Gao, P., Xue, Z., Peng, Q., Chandiran, A. K., & Liu, B. (2012). Mesoscopic CH3NH3PbI3 /TiO2 Heterojunction Solar Cells, 8–11. https://doi.org/10.1021/ja307789s

Feldmann, S., Macpherson, S., Senanayak, S. P., Abdi-jalebi, M., Rivett, J. P. H., Nan, G., … Deschler, F. (2020). Photodoping through local charge carrier accumulation in alloyed hybrid perovskites for highly efficient luminescence. Nature Photonics, 14, 123–128.

Heo, J. H., Im, S. H., Noh, J. H., Mandal, T. N., Lim, C. S., Chang, J. A., … Seok, S. Il. (2013). Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 7(6), 1–6. https://doi.org/10.1038/nphoton.2013.80

Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W., & Park, N.-G. (2011). 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell. Nanoscale, 3(10), 4088–4093. https://doi.org/10.1039/c1nr10867k

Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., … Park, N.-G. (2012). Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. SCIENTIFIC REPORTS, 2:591, 1–7. https://doi.org/10.1038/srep00591

Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050–6051. https://doi.org/10.1021/ja809598r

Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Reports, 338(November), 643–648. https://doi.org/10.1126/science.1228604

Li, C., Guo, Q., Qiao, W., Chen, Q., Ma, S., Pan, X., … Tan, Z. (2016). Efficient lead acetate sourced planar heterojunction perovskite solar cells with enhanced substrate coverage via one-step spin-coating. Organic Electronics: Physics, Materials, Applications, 33, 194–200. https://doi.org/10.1016/j.orgel.2016.03.017

Liu, M.-H., Zhou, Z.-J., Zhang, P.-P., Tian, Q.-W., Zhou, W.-H., Kou, D.-X., & Wu, S.-X. (2016). p-type Li, Cu-codoped NiOx hole-transporting layer for efficient planar perovskite solar cells. Optics Express, 24(22), 128–132. https://doi.org/org/10.1364/OE.24.0A1349

Liu, M., Johnston, M. B., & Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501(7467), 395–398. https://doi.org/10.1038/nature12509

Moore, D. T., Sai, H., Tan, K. W., Estroff, L. A., & Wiesner, U. (2014). Impact of the organic halide salt on final perovskite composition for photovoltaic applications composition for photovoltaic applications. APL Materials, 2(May). https://doi.org/10.1063/1.4886275

Qing, J., Chandran, H. T., Xue, H. T., Guan, Z. Q., Liu, T. L., Tsang, S. W., … Lee, C. S. (2015). Simple fabrication of perovskite solar cells using lead acetate as lead source at low temperature. Organic Electronics: Physics, Materials, Applications, 27, 12–17. https://doi.org/10.1016/j.orgel.2015.08.021

Sanni, D. M., Chen, Y., Yerramilli, A. S., Ntsoenzok, E., Asare, J., Adeniji, S. A., … Alford, T. L. (2019). An approach to optimize pre ‑ annealing aging and anneal conditions to improve photovoltaic performance of perovskite solar cells. Materials for Renewable and Sustainable Energy, 3, 1–10. https://doi.org/10.1007/s40243-018-0139-3

Shao, Y., Xiao, Z., Bi, C., Yuan, Y., & Huang, J. (2014). Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nature Communications, 5, 1–7. https://doi.org/10.1038/ncomms6784

Sima, M., Vasile, E., & Sima, M. (2017). Lead acetate film as precursor for two-step deposition of CH 3 NH 3 PbI 3. Materials Research Bulletin, 89, 89–96. https://doi.org/10.1016/j.materresbull.2017.01.031

Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J. P., Leijtens, T., … Snaith, H. J. (2013). Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Reports, 342(October), 341–345. https://doi.org/10.1126/science.1243982

Tan, H., Jain, A., Voznyy, O., Lan, X., De Arquer, F. P. G., Fan, J. Z., … Sargent, E. H. (2017). Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science, 355(6326), 722–726. https://doi.org/10.1126/science.aai9081

Xing, G., Mathews, N., Lim, S. S., Lam, Y. M., Mhaisalkar, S., & Sum, T. C. (2013). Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3. Science, 342(October), 344–348. https://doi.org/10.1126/science.1243167

Ye-Jin, J., Lee, S., Kang, R., Kim, J.-E., Yeo, J.-S., Lee, S.-H., … Kim, D.-Y. (2014). Planar heterojunction perovskite solar cells with superior reproducibility. Scientific Reports, 4, 1–7. https://doi.org/10.1038/srep06953

Yerramilli, A. S., Chen, Y., Sanni, D., Asare, J., Theodore, N. D., & Alford, T. L. (2018). Impact of excess lead on the stability and photo-induced degradation of lead halide perovskite solar cells. Organic Electronics: Physics, Materials, Applications, 59. https://doi.org/10.1016/j.orgel.2018.04.052

Yoshida, T., Fujikake, S., Kato, S., Tanda, M., Tabuchi, K., Takano, A., … Sakai, H. (1997). Development of process technologies for plastic-film substrate solar cells. Solar Energy Materials and Solar Cells, 48, 383–391. https://doi.org/org/10.1016/S0927-0248(97)00167-0

You, J., Hong, Z., Yang, Y. (Michael), Chen, Q., Cai, M., Song, T.-B., … Yang, Y. (2014). Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility, (Xx). https://doi.org/10.1021/nn406020d

You, J., Hong, Z., Yang, Y. M., Chen, Q., Cai, M., Song, T., & Chen, C. (2014). Perovskite Solar Cells with High Effi ciency and Flexibility, (2), 1674–1680. https://doi.org/10.1021/nn406020d

Zhang, W., Saliba, M., Moore, D. T., Pathak, S. K., Hörantner, M. T., Stergiopoulos, T., … Snaith, H. J. (2015). Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nature Communications, 6, 1–10. https://doi.org/10.1038/ncomms7142

Zhou, H., Chen, Q., Li, G., Luo, S., Song, T., Duan, H.-S., … Yang, Y. (2014). Interface engineering of highly efficient perovskite solar cells. Reseach Reports, 345(6196), 542–546. https://doi.org/10.1126/science.1254050

Published
2020-04-14
How to Cite
SanniD. M., JosephE., & AdamuM. A. (2020). THE IMPORTANCE OF FILM THICKNESS ON THE PHOTOVOLTAIC PERFORMANCE OF PEROVSKITE SOLAR CELLS. FUDMA JOURNAL OF SCIENCES, 4(1), 600 - 606. Retrieved from https://fjs.fudutsinma.edu.ng/index.php/fjs/article/view/87