DYNAMIC SELF-ASSEMBLY IN E.COLI BACTERIA SUSPENSION

  • Isaiah Igwe Federal University, Dutsin-Ma
  • Emmanuel Joseph
Keywords: Electric field, bacteria concentration, self-assembly, dynamic equilibrium, biomaterials

Abstract

We experimentally investigate self-assembly in bacteria suspension under low frequency alternating electric field. We observe the emergence of electric field-induced bacterial clusters as a function of electric field strength and bacterial concentrations. Above the electric critical field, bacterial cell self-organize into clusters, with further increase in field strength or bacteria concentration, a second critical point is reached, where 3D out of equilibrium structures are formed. Our findings demonstrates that the self-assembly of microswimmers can be controlled via external electric field. The observed cluster size dynamic equilibrium is in contrast with the features of cluster dynamics observed in cancer cells driven by adhesion where the cluster size distribution never reaches dynamic equilibrium. These results can offer a new pathway to self-organize living cells in biomaterials

References

Dhont, J. K., & Kang, K. (2014). An electric-field induced dynamical state in dispersions of charged colloidal rods. Soft Matter, 10(12), 1987-2007. doi:10.1039/c3sm52277f DOI: https://doi.org/10.1039/C3SM52277F

Dhont, K. K. a. J. K. G. (2008). Double-layer polarization induced transitions in suspensions of colloidal rods. European Physical Letters, 84. doi:10.1209/0295-5075/84/14005 DOI: https://doi.org/10.1209/0295-5075/84/14005

Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R. E., & Kessler, J. O. (2004). Self-concentration and large-scale coherence in bacterial dynamics. Phys Rev Lett, 93(9), 098103. doi:10.1103/PhysRevLett.93.098103 DOI: https://doi.org/10.1103/PhysRevLett.93.098103

Gupta, S., Alargova, R. G., Kilpatrick, P. K., Velev, O. D. (2010). On-Chip Dielectrophoretic Co-assembly of Live Cells and Particles into Responsive Biomaterials. Langmuir. 26, 3441. doi.org/10.1021/la902989r DOI: https://doi.org/10.1021/la902989r

Kang, K. (2014). Glass transition of repulsive charged rods (fd-viruses). Soft Matter, 10(18), 3311-3324. doi:10.1039/c3sm53131g DOI: https://doi.org/10.1039/c3sm53131g

Kang, K., & Dhont, J. K. (2013). Glass transition in suspensions of charged rods: structural arrest and texture dynamics. Phys Rev Lett, 110(1), 015901. doi:10.1103/PhysRevLett.110.015901 DOI: https://doi.org/10.1103/PhysRevLett.110.015901

Kang, K., & Dhont, J. K. (2015). An electric-field induced dynamical state in dispersions of highly charged colloidal rods: comparison of experiment and theory. Colloid Polym Sci, 293(11), 3325-3336. doi:10.1007/s00396-015-3707-4 DOI: https://doi.org/10.1007/s00396-015-3707-4

Khain, E., Schneider-Mizell, C. M., Nowicki, M. O., Chiocca, E. A., Lawler, S. E., & Sander, L. M. (2009). Pattern formation of glioma cells: Effects of adhesion. EPL (Europhysics Letters), 88(2), 28006. doi:10.1209/0295-5075/88/28006 DOI: https://doi.org/10.1209/0295-5075/88/28006

Markx, G. H. (2008). The use of electric fields in tissue engineering. Organogenesis, 4:1, 11-17. 10.4161/org.5799 DOI: https://doi.org/10.4161/org.5799

Mendelson, N. H., Bourque, A., Wilkening, K., Anderson, K. R. & Watkins, J. C. (1999). Organized cell swimming motions in Bacillus subtilis colonies: Patterns of Short-Lived Whirls and Jets. J. Bacteriol., 181, 600–609. DOI: https://doi.org/10.1128/JB.181.2.600-609.1999

Mino G, M. T., Darnige T, Hoyos M, Dauchet J, Dunstan J, Soto R, Wang Y, Rousselet A and Clement E. (2011). Enhance diffusion due to active swimmers at solid surface. Phys. Rev. Lett., 106. doi:048102 DOI: https://doi.org/10.1103/PhysRevLett.106.048102

Samantaray, K., Bhol, P., Sahoo, B., Barik, S. K., Jathavedan, K., Sahu, B. R., Mohanty, P. S. (2017). Template-Free Assembly in Living Bacterial Suspension under an External Electric Field. ACS Omega, 2(3), 1019-1024. doi:10.1021/acsomega.6b00541 DOI: https://doi.org/10.1021/acsomega.6b00541

Wu, X.-L. L., A. (2000). Particle Diffusion in a Quasi-two-dimensional Bacterial Bath. Phys. Rev. Lett., 84, 3017–3020. doi: (doi:10.1103 /PhysRevLett.84.3017) DOI: https://doi.org/10.1103/PhysRevLett.84.3017

Zhang, H. P., Be'er, A., Florin, E. L., & Swinney, H. L. (2010). Collective motion and density fluctuations in bacterial colonies. Proc Natl Acad Sci U S A, 107(31), 13626-13630. doi:10.1073/pnas.1001651107 DOI: https://doi.org/10.1073/pnas.1001651107

Zhihua Lin, C. G., Meiling Chen, Xiankun Lin, Qiang He. (2018). Collective motion and dynamic self-assembly of colloid motors. Current Opinion in Colloids & Interface Science 35, 51-58. DOI: https://doi.org/10.1016/j.cocis.2018.01.006

Published
2023-06-29
How to Cite
IgweI., & JosephE. (2023). DYNAMIC SELF-ASSEMBLY IN E.COLI BACTERIA SUSPENSION. FUDMA JOURNAL OF SCIENCES, 4(4), 438 - 442. https://doi.org/10.33003/fjs-2020-0404-500