ELECTRIC FIELD INDUCED CLUSTERING IN SUSPENSION OF E.COLI BACTERIA
Abstract
Living microswimmers such as bacteria tend to collective organize into communities in response to external field. As this microswimmers swims, it stirs the fluid and creates flows which generally lead to hydrodynamic interactions with its neighbors. The flows can sometimes affect the collective dynamics of the suspension leading to complex cell interactions. To further understand the role of fluid flow in the dynamics of bacterial suspension, we applied electric field to a suspension of Escherichia coli, which are known for their run and tumble motion. As a consequence, we find that the fluid flow generated by electric field, induces attractive hydrodynamic interaction between the swimming bacterial which in turn leads to bacterial clusters. Indicating that the applied electric force completely disrupted and drowns the self-generated hydrodynamics of swimming bacterial cells. Our results will allow us to examine the relative importance of fluid flow bacteria cell transport and other bacterial process
References
Aranson, I. S. (2018). Harnessing Medium Anisotropy To Control Active Matter. Acc Chem Res, 51(12), 3023-3030. doi:10.1021/acs.accounts.8b00300
C, B. H. (2004 ). E. Coli in Motion (New York: Springer).
Dombrowski, C., Cisneros, L., Chatkaew, S., Goldstein, R. E., & Kessler, J. O. (2004). Self-concentration and large-scale coherence in bacterial dynamics. Phys Rev Lett, 93(9), 098103. doi:10.1103/PhysRevLett.93.098103
Drescher, K., Dunkel, J., Cisneros, L. H., Ganguly, S., & Goldstein, R. E. (2011). Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering. Proc Natl Acad Sci U S A, 108(27), 10940-10945. doi:10.1073/pnas.1019079108
Drescher, K., Goldstein, R. E., Michel, N., Polin, M., & Tuval, I. (2010). Direct measurement of the flow field around swimming microorganisms. Phys Rev Lett, 105(16), 168101. doi:10.1103/PhysRevLett.105.168101
Elgeti, J., Winkler, R. G., & Gompper, G. (2015). Physics of microswimmers—single particle motion and collective behavior: a review. Reports on Progress in Physics, 78(5), 056601. doi:10.1088/0034-4885/78/5/056601
Lauga, E., & Powers, T. R. (2009). The hydrodynamics of swimming microorganisms. Reports on Progress in Physics, 72(9), 096601. doi:10.1088/0034-4885/72/9/096601
Macnab, R. M. (1977). Bacterial flagella rotating in bundles: a study in helical geometry. Proceedings of the National Academy of Sciences, 74(1), 221-225. doi:10.1073/pnas.74.1.221
Mano, T., Delfau, J. B., Iwasawa, J., & Sano, M. (2017). Optimal run-and-tumble-based transportation of a Janus particle with active steering. Proc Natl Acad Sci U S A, 114(13), E2580-e2589. doi:10.1073/pnas.1616013114
Nishiguchi, D., & Sano, M. (2015). Mesoscopic turbulence and local order in Janus particles self-propelling under an ac electric field. Phys Rev E Stat Nonlin Soft Matter Phys, 92(5), 052309. doi:10.1103/PhysRevE.92.052309
Park, J. S., & Saintillan, D. (2011). Electric-field-induced ordering and pattern formation in colloidal suspensions. Phys Rev E Stat Nonlin Soft Matter Phys, 83(4 Pt 1), 041409. doi:10.1103/PhysRevE.83.041409
Trivedi, R. R., Maeda, R., Abbott, N. L., Spagnolie, S. E., & Weibel, D. B. (2015). Bacterial transport of colloids in liquid crystalline environments. Soft Matter, 11(43), 8404-8408. doi:10.1039/C5SM02041G
Turner, L., Ryu, W. S., & Berg, H. C. (2000). Real-Time Imaging of Fluorescent Flagellar Filaments. Journal of Bacteriology, 182(10), 2793-2801. doi:10.1128/jb.182.10.2793-2801.2000
Tuval, I., Cisneros, L., Dombrowski, C., Wolgemuth, C. W., Kessler, J. O., & Goldstein, R. E. (2005). Bacterial swimming and oxygen transport near contact lines. Proc Natl Acad Sci U S A, 102(7), 2277-2282. doi:10.1073/pnas.0406724102
Wioland, H., Woodhouse, F. G., Dunkel, J., Kessler, J. O., & Goldstein, R. E. (2013). Confinement stabilizes a bacterial suspension into a spiral vortex. Phys Rev Lett, 110(26), 268102. doi:10.1103/PhysRevLett.110.268102
Yan, J., Han, M., Zhang, J., Xu, C., Luijten, E., & Granick, S. (2016). Reconfiguring active particles by electrostatic imbalance. Nat Mater, 15(10), 1095-1099. doi:10.1038/nmat4696
Zhang, J., Yan, J., & Granick, S. (2016). Directed Self-Assembly Pathways of Active Colloidal Clusters. Angew Chem Int Ed Engl, 55(17), 5166-5169. doi:10.1002/anie.201509978
FUDMA Journal of Sciences