• N. Abdullahi
  • E. C Igwe
  • M. A. Dandago
  • N. B. Umar
Keywords: chemical contaminant, food safety, food contamination, soil contamination, urban agriculture


The qualities of agricultural soil and water are diminishing continuously due to the rigorous anthropogenic activities currently stocking the soil with a lot of toxic chemicals including heavy metals. Heavy metals are highly persistent and non-biodegradable, control of their contamination is very tricky to handle. Their presence in soil and water is detrimental to food crops and humans. Various sources of heavy metals contaminants and the role of urban food production on human heavy metal contamination were discussed.Heavy metals have their way into the soil and food crops through wastewater irrigation and production in contaminated soil. The habitual heavy metals contamination sources for food crops are wastewater irrigation, abuse of agrochemicals, production in the contaminated field, atmospheric deposit when foods are exposed to contaminated air, and unethical mining activities. Agricultural soil in urban and peri-urban areas are heavily contaminated with heavy metal due to various anthropogenic activities. Wastewater irrigation intensify the contamination by supplying the soil with more heavy metals. The heavy metals are passed to food during production and subsequently to humans after consumption.


Ababsa, N., Kribaa, M., Tamrabet, L., Addad, D., Hallaire, V., and Ouldjaoui, A. (2020). Long-term effects of wastewater reuse on hydro physicals characteristics of grassland grown soil in semi-arid Algeria. Journal of King Saud University - Science, 32(1), 1004–1013. doi.org/10.1016/j.jksus.2019.09.007

Agbeshie, A. A., Adjei, R., Anokye, J., and Banunle, A. (2020). Municipal waste dumpsite: Impact on soil properties and heavy metal concentrations, Sunyani, Ghana. Scientific African, 8, 1–10. doi.org/10.1016/j.sciaf.2020.e00390

Ahmad, A., Arif, M. S., Yasmeen, T., Riaz, M., Rizwan, M., Shahzad, S. M., Ali, S., Riaz, M. A., and Sarosh, M. (2020). Seasonal variations of soil phosphorus and associated fertility indicators in wastewater-irrigated urban aridisol. Chemosphere, 239, 1–12. doi.org/10.1016/j.chemosphere.2019.124725

Alemu, T., Mekonnen, A., and Leta, S. (2019). Integrated tannery wastewater treatment for effluent reuse for irrigation: Encouraging water efficiency and sustainable development in developing countries. Journal of Water Process Engineering, 30, 1–8. doi.org/10.1016/j.jwpe.2017.10.014

Amira, A., Merad, I., Almeida, C. M. R., Guimarães, L., and Soltani, N. (2018). Seasonal variation in biomarker responses of Donax trunculus from the Gulf of Annaba (Algeria): Implication of metal accumulation in sediments. Comptes Rendus - Geoscience, 350(4), 173–179. doi.org/10.1016/j.crte.2018.02.002

Amos, C. C., Rahman, A., Karim, F., and Gathenya, J. M. (2018). A scoping review of roof harvested rainwater usage in urban agriculture: Australia and Kenya in focus. Journal of Cleaner Production, 202, 174–190. doi.org/10.1016/j.jclepro.2018.08.108

Anjum, M. A., Hussain, S., Arshad, P., and Hassan, A. (2021). Irrigation water of different sources affects fruit quality attributes and heavy metals contents of un-grafted and commercial mango cultivars. Journal of Environmental Management, 281, 111895. doi.org/10.1016/j.jenvman.2020.111895

Arfaeinia, H., Dobaradaran, S., Moradi, M., Pasalari, H., Mehrizi, E. A., Taghizadeh, F., Esmaili, A., and Ansarizadeh, M. (2019). The effect of land use configurations on concentration, spatial distribution, and ecological risk of heavy metals in coastal sediments of northern part along the Persian Gulf. Science of the Total Environment, 653, 783–791. doi.org/10.1016/j.scitotenv.2018.11.009

Armanda, D. T., Guinée, J. B., and Tukker, A. (2019). The second green revolution: Innovative urban agriculture’s contribution to food security and sustainability – A review. Global Food Security, 22(August), 13–24. doi.org/10.1016/j.gfs.2019.08.002

Atamaleki, A., Yazdanbakhsh, A., Fakhri, Y., Mahdipour, F., Khodakarim, S., and Mousavi Khaneghah, A. (2019). The concentration of potentially toxic elements (PTEs) in the onion and tomato irrigated by wastewater: A systematic review; meta-analysis and health risk assessment. Food Research International, 125, 1–8. doi.org/10.1016/j.foodres.2019.108518

Benis, K., and Ferrão, P. (2018). Commercial farming within the urban built environment – Taking stock of an evolving field in northern countries. Global Food Security, 17(November 2017), 30–37. doi.org/10.1016/j.gfs.2018.03.005

Bhagwat, V. R. (2019). Safety of water used in food production. In R. L. Singh & S. Mondal (Eds.), Food Safety and Human Health (first, pp. 219–247). Elsevier Inc. doi.org/10.1016/B978-0-12-816333-7.00009-6

Bi, C., Zhou, Y., Chen, Z., Jia, J., and Bao, X. (2018). Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China. Science of the Total Environment, 619–620, 1349–1357. doi.org/10.1016/j.scitotenv.2017.11.177

Byers, H. L., Mchenry, L. J., and Grundl, T. J. (2020). Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review. Journal of Materials Science and Technology, 43, 175–188. doi.org/10.1016/j.jmst.2019.11.010

Cao, C., Zhang, Q., Ma, Z. B., Wang, X. M., Chen, H., and Wang, J. J. (2018). Fractionation and mobility risks of heavy metals and metalloids in wastewater-irrigated agricultural soils from greenhouses and fields in Gansu, China. Geoderma, 328, 1–9. doi.org/10.1016/j.geoderma.2018.05.001

Chaoua, S., Boussaa, S., El Gharmali, A., and Boumezzough, A. (2019). Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco. Journal of the Saudi Society of Agricultural Sciences, 18(4), 429–436. doi.org/10.1016/j.jssas.2018.02.003

Chen, X. X., Liu, Y. M., Zhao, Q. Y., Cao, W. Q., Chen, X. P., and Zou, C. Q. (2020). Health risk assessment associated with heavy metal accumulation in wheat after long-term phosphorus fertilizer application. Environmental Pollution, 262, 1–9. doi.org/10.1016/j.envpol.2020.114348

Chojnacka, K., Witek-Krowiak, A., Moustakas, K., Skrzypczak, D., Mikula, K., and Loizidou, M. (2020). A transition from conventional irrigation to fertigation with reclaimed wastewater: Prospects and challenges. Renewable and Sustainable Energy Reviews, 130, 1–14. doi.org/10.1016/j.rser.2020.109959

Christou, A., Agüera, A., Bayona, J. M., Cytryn, E., Fotopoulos, V., Lambropoulou, D., Manaia, C. M., Michael, C., Revitt, M., Schröder, P., and Fatta-Kassinos, D. (2017). The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes – A review. Water Research, 123, 448–467. doi.org/10.1016/j.watres.2017.07.004

Christou, A., Maratheftis, G., Elia, M., Hapeshi, E., Michael, C., and Fatta-Kassinos, D. (2016). Effects of wastewater applied with discrete irrigation techniques on strawberry plants’ productivity and the safety, quality characteristics and antioxidant capacity of fruits. Agricultural Water Management, 173, 48–54. doi.org/10.1016/j.agwat.2016.04.027

Chu, Z., Fan, X., Wang, W., and Huang, W. chiao. (2019). Quantitative evaluation of heavy metals’ pollution hazards and estimation of heavy metals’ environmental costs in leachate during food waste composting. Waste Management, 84, 119–128. doi.org/10.1016/j.wasman.2018.11.031

Chung, S. Y., Senapathi, V., Park, K. H., Son, J. H., and Sekar, S. (2018). Source and remediation for heavy metals of soils at an iron mine of Ulsan City, Korea. Arabian Journal of Geosciences, 11(24). doi.org/10.1007/s12517-018-4141-y

Cooper, A. M., Felix, D., Alcantara, F., Zaslavsky, I., Work, A., Watson, P. L., Pezzoli, K., Yu, Q., Zhu, D., Scavo, A. J., Zarabi, Y., and Schroeder, J. I. (2020). Monitoring and mitigation of toxic heavy metals and arsenic accumulation in food crops: A case study of an urban community garden. Plant Direct, 4(1), 1–12. doi.org/10.1002/pld3.198

Deng, M., Yang, X., Dai, X., Zhang, Q., Malik, A., and Sadeghpour, A. (2020). Heavy metal pollution risk assessments and their transportation in sediment and overlay water for the typical Chinese reservoirs. Ecological Indicators, 112, 1–8. doi.org/10.1016/j.ecolind.2020.106166

Deviller, G., Lundy, L., and Fatta-Kassinos, D. (2020). Recommendations to derive quality standards for chemical pollutants in reclaimed water intended for reuse in agricultural irrigation. Chemosphere, 240, 1–8. doi.org/10.1016/j.chemosphere.2019.124911

Diehl, J. A., Sweeney, E., Wong, B., Sia, C. S., Yao, H., and Prabhudesai, M. (2020). Feeding cities: Singapore’s approach to land use planning for urban agriculture. Global Food Security, 26(August 2019), 1–11. doi.org/10.1016/j.gfs.2020.100377

Edelstein, M., and Ben-Hur, M. (2018). Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Scientia Horticulturae, 234, 431–444. doi.org/10.1016/j.scienta.2017.12.039

Elbehiry, F., Elbasiouny, H., Ali, R., and Brevik, E. C. (2020). Enhanced Immobilization and Phytoremediation of Heavy Metals in Landfill Contaminated Soils. Water, Air, and Soil Pollution, 231(5). doi.org/10.1007/s11270-020-04493-2

Elmi, A., Al-Khaldy, A., and AlOlayan, M. (2020). Sewage sludge land application: Balancing act between agronomic benefits and environmental concerns. Journal of Cleaner Production, 250, 119512. doi.org/10.1016/j.jclepro.2019.119512

Fan, Y., Zhang, Y., Chen, Z., Wang, X., and Huang, B. (2021). Comprehensive assessments of soil fertility and environmental quality in plastic greenhouse production systems. Geoderma, 385, 114899. doi.org/10.1016/j.geoderma.2020.114899

Fan, Yuan, Li, H., Xue, Z., Zhang, Q., and Cheng, F. (2017). Accumulation characteristics and potential risk of heavy metals in soil-vegetable system under greenhouse cultivation condition in Northern China. Ecological Engineering, 102, 367–373. doi.org/10.1016/j.ecoleng.2017.02.032

Feng, W., Guo, Z., Xiao, X., Peng, C., Shi, L., Ran, H., and Xu, W. (2020). A dynamic model to evaluate the critical loads of heavy metals in agricultural soil. Ecotoxicology and Environmental Safety, 197(April), 110607. doi.org/10.1016/j.ecoenv.2020.110607

Ferreira, A. J. D., Guilherme, R. I. M. M., Ferreira, C. S. S., and Oliveira, M. de F. M. L. de. (2018). Urban agriculture, a tool towards more resilient urban communities? Current Opinion in Environmental Science and Health, 5, 93–97. doi.org/10.1016/j.coesh.2018.06.004

Frank, J. J., Poulakos, A. G., Tornero-Velez, R., and Xue, J. (2019). Systematic review and meta-analyses of lead (Pb) concentrations in environmental media (soil, dust, water, food, and air) reported in the United States from 1996 to 2016. Science of the Total Environment, 694, 1–18. doi.org/10.1016/j.scitotenv.2019.07.295

Garrigues, S., Esteve-Turrillas, F. A., and de la Guardia, M. (2019). Greening the wastes. Current Opinion in Green and Sustainable Chemistry, 19, 24–29. doi.org/10.1016/j.cogsc.2019.04.002

Ha, T. M., Shakur, S., Hang, K., and Do, P. (2020). Risk perception and its impact on vegetable consumption: A case study from Hanoi, Vietnam. Journal of Cleaner Production. doi.org/10.1016/j.jclepro.2020.122793

Hong, Y., Shen, R., Cheng, H., Chen, Y., Zhang, Y., Liu, Y., Zhou, M., Yu, L., Liu, Y., and Liu, Y. (2019). Estimating lead and zinc concentrations in peri-urban agricultural soils through reflectance spectroscopy: Effects of fractional-order derivative and random forest. Science of the Total Environment, 651, 1969–1982. doi.org/10.1016/j.scitotenv.2018.09.391

Hu, W., Wang, H., Dong, L., Huang, B., Borggaard, O. K., Bruun Hansen, H. C., He, Y., and Holm, P. E. (2018). Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach. Environmental Pollution, 237, 650–661. doi.org/10.1016/j.envpol.2018.02.070

Huang, Y., Wang, L., Wang, W., Li, T., He, Z., and Yang, X. (2019). Current status of agricultural soil pollution by heavy metals in China: A meta-analysis. Science of the Total Environment, 651, 3034–3042. doi.org/10.1016/j.scitotenv.2018.10.185

Hussain, A., Priyadarshi, M., and Dubey, S. (2019). Experimental study on accumulation of heavy metals in vegetables irrigated with treated wastewater. Applied Water Science, 9(5), 1–11. doi.org/10.1007/s13201-019-0999-4

Inyinbor, A. A., Bello, O. S., Oluyori, A. P., Inyinbor, H. E., and Fadiji, A. E. (2019). Wastewater conservation and reuse in quality vegetable cultivation: Overview, challenges and future prospects. Food Control, 98, 489–500. doi.org/10.1016/j.foodcont.2018.12.008

Islam, M. S., Ahmed, M. K., Al-mamun, M. H., and Islam, S. M. A. (2019). Sources and Ecological Risks of Heavy Metals in Soils Under Different Land Uses in Bangladesh. Pedosphere, 29(5), 665–675. doi.org/10.1016/S1002-0160(17)60394-1

Jafari, A., Ghaderpoori, M., Kamarehi, B., and Abdipour, H. (2019). Soil pollution evaluation and health risk assessment of heavy metals around Douroud cement factory, Iran. Environmental Earth Sciences, 78(8), 1–9. doi.org/10.1007/s12665-019-8220-5

Jia, Y., Chen, W., Zuo, Y., Lin, L., and Song, L. (2018). Heavy metal migration and risk transference associated with cyanobacterial blooms in eutrophic freshwater. Science of the Total Environment, 613–614, 1324–1330. doi.org/10.1016/j.scitotenv.2017.09.180

Keeflee, M. N. S. N. K., Zain, W. M. W. N. A., Nor, M. M. N., Jamion, N. A., and Yong, S. K. (2020). Growth and metal uptake of spinach with application of co-compost of cat manure and spent coffee ground. Heliyon, 6, e05086. doi.org/10.1016/j.heliyon.2020.e05086

Khan, A. Z., Khan, S., Ayaz, T., Brusseau, M. L., Khan, M. A., Nawab, J., and Muhammad, S. (2020). Popular wood and sugarcane bagasse biochars reduced uptake of chromium and lead by lettuce from mine-contaminated soil. Environmental Pollution, 263, 114446. doi.org/10.1016/j.envpol.2020.114446

Kicińska, A., and Wikar, J. (2021). Ecological risk associated with agricultural production in soils contaminated by the activities of the metal ore mining and processing industry - example from southern Poland. Soil and Tillage Research, 205, 104817. doi.org/10.1016/j.still.2020.104817

Kookana, R. S., Drechsel, P., Jamwal, P., and Vanderzalm, J. (2020). Urbanisation and emerging economies: Issues and potential solutions for water and food security. Science of the Total Environment, 732, 139057. doi.org/10.1016/j.scitotenv.2020.139057

Kumar, V., Thakur, R. K., and Kumar, P. (2019). Assessment of heavy metals uptake by cauliflower (Brassica oleracea var. botrytis) grown in integrated industrial effluent irrigated soils: A prediction modeling study. Scientia Horticulturae, 257, 1–10. doi.org/10.1016/j.scienta.2019.108682

Li, Weila, and Achal, V. (2020). Environmental and health impacts due to e-waste disposal in China – A review. Science of the Total Environment, 737, 1–12. doi.org/10.1016/j.scitotenv.2020.139745

Li, Wenbo, Wang, D., Liu, S., and Zhu, Y. (2019). Measuring urbanization-occupation and internal conversion of peri-urban cultivated land to determine changes in the peri-urban agriculture of the black soil region. Ecological Indicators, 102, 328–337. doi.org/10.1016/j.ecolind.2019.02.055

Liao, J., Wen, Z., Ru, X., Chen, J., Wu, H., and Wei, C. (2016). Distribution and migration of heavy metals in soil and crops affected by acid mine drainage: Public health implications in Guangdong Province, China. Ecotoxicology and Environmental Safety, 124, 460–469. doi.org/10.1016/j.ecoenv.2015.11.023

Lin, Y. C., Lee, W. J., Shih, Y. J., Jhang, S. R., and Chien, S. K. (2018). Levels and sources of heavy metals in soil, sediment, and food crop in the vicinity of electric arc furnace (EAF) steelmaking plant: a case study from Taiwan. Journal of Soils and Sediments, 18(7), 2562–2572. doi.org/10.1007/s11368-018-1963-x

Liu, P., Hu, W., Tian, K., Huang, B., Zhao, Y., Wang, X., Zhou, Y., Shi, B., Kwon, B. O., Choi, K., Ryu, J., Chen, Y., Wang, T., and Khim, J. S. (2020). Accumulation and ecological risk of heavy metals in soils along the coastal areas of the Bohai Sea and the Yellow Sea: A comparative study of China and South Korea. Environment International, 137, 1–12. doi.org/10.1016/j.envint.2020.105519

Luo, W., Zhang, N., Li, Z., Xu, Z., Wang, D., Liao, G., Pang, G., Xu, G., Wang, Y., Huang, X., Chen, D., Zeng, C., and Du, Z. (2021). Increasement of Cd adsorption capacity of rice stubble from being alive until death in a modified rice-fish system. Ecotoxicology and Environmental Safety, May 2020, 111441. doi.org/10.1016/j.ecoenv.2020.111441

Magwaza, S. T., Magwaza, L. S., Odindo, A. O., and Mditshwa, A. (2020). Hydroponic technology as decentralised system for domestic wastewater treatment and vegetable production in urban agriculture: A review. Science of the Total Environment, 698, 1–13. doi.org/10.1016/j.scitotenv.2019.134154

Maleksaeidi, H., Ranjbar, S., Eskandari, F., Jalali, M., and Keshavarz, M. (2018). Vegetable farmers’ knowledge, attitude and drivers regarding untreated wastewater irrigation in developing countries: A case study in Iran. Journal of Cleaner Production, 202, 863–870. doi.org/10.1016/j.jclepro.2018.08.208

Margenat, A., Matamoros, V., Díez, S., Cañameras, N., Comas, J., and Bayona, J. M. (2018). Occurrence and bioaccumulation of chemical contaminants in lettuce grown in peri-urban horticulture. Science of the Total Environment, 637–638, 1166–1174. doi.org/10.1016/j.scitotenv.2018.05.035

Margenat, A., Matamoros, V., Díez, S., Cañameras, N., Comas, J., and Bayona, J. M. (2019). Occurrence and human health implications of chemical contaminants in vegetables grown in peri-urban agriculture. Environment International, 124, 49–57. doi.org/10.1016/j.envint.2018.12.013

Martínez-Cortijo, J., and Ruiz-Canales, A. (2018). Effect of heavy metals on rice irrigated fields with waste water in high pH Mediterranean soils: The particular case of the Valencia area in Spain. Agricultural Water Management, 210, 108–123. doi.org/10.1016/j.agwat.2018.07.037

Mason, B., Rufí-Salís, M., Parada, F., Gabarrell, X., and Gruden, C. (2019). Intelligent urban irrigation systems: Saving water and maintaining crop yields. Agricultural Water Management, 226, 1–8. doi.org/10.1016/j.agwat.2019.105812

Massoud, R., Hadiani, M. R., Hamzehlou, P., and Khosravi-Darani, K. (2019). Bioremediation of heavy metals in food industry: Application of Saccharomyces cerevisiae. Electronic Journal of Biotechnology, 37, 56–60. doi.org/10.1016/j.ejbt.2018.11.003

Mehmood, A., Aslam Mirza, M., Aziz Choudhary, M., Kim, K. H., Raza, W., Raza, N., Soo Lee, S., Zhang, M., Lee, J. H., and Sarfraz, M. (2019). Spatial distribution of heavy metals in crops in a wastewater irrigated zone and health risk assessment. Environmental Research, 168, 382–388. doi.org/10.1016/j.envres.2018.09.020

Mkhinini, M., Boughattas, I., Alphonse, V., Livet, A., Gıustı-Mıller, S., Bannı, M., and Bousserrhıne, N. (2020). Heavy metal accumulation and changes in soil enzymes activities and bacterial functional diversity under long-term treated wastewater irrigation in East Central region of Tunisia (Monastir governorate). Agricultural Water Management, 235, 1–10. doi.org/10.1016/j.agwat.2020.106150

Mwesigye, A. R., Young, S. D., Bailey, E. H., and Tumwebaze, S. B. (2019). Uptake of trace elements by food crops grown within the Kilembe copper mine catchment, Western Uganda. Journal of Geochemical Exploration, 207, 1–8. doi.org/10.1016/j.gexplo.2019.106377

Ng, K. T., Herrero, P., Hatt, B., Farrelly, M., and McCarthy, D. (2018). Biofilters for urban agriculture: Metal uptake of vegetables irrigated with stormwater. Ecological Engineering, 122, 177–186. doi.org/10.1016/j.ecoleng.2018.07.033

Ngure, V., and Kinuthia, G. (2020). Health risk implications of lead, cadmium, zinc, and nickel for consumers of food items in Migori Gold mines, Kenya. Journal of Geochemical Exploration, 209, 1–13. doi.org/10.1016/j.gexplo.2019.106430

Nuapia, Y., Chimuka, L., and Cukrowska, E. (2018). Assessment of heavy metals in raw food samples from open markets in two African cities. Chemosphere, 196, 339–346. doi.org/10.1016/j.chemosphere.2017.12.134

Nzediegwu, C., Prasher, S., Elsayed, E., Dhiman, J., Mawof, A., and Patel, R. (2019). Effect of biochar on heavy metal accumulation in potatoes from wastewater irrigation. Journal of Environmental Management, 232, 153–164. doi.org/10.1016/j.jenvman.2018.11.013

Ofori, S., PuÅ¡káÄová, A., RůžiÄková, I., and Wanner, J. (2021). Treated wastewater reuse for irrigation: Pros and cons. Science of the Total Environment, 760, 144026. doi.org/10.1016/j.scitotenv.2020.144026

Paithankar, J. G., Saini, S., Dwivedi, S., Sharma, A., and Chowdhuri, D. K. (2021). Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. Chemosphere, 262, 128350. doi.org/10.1016/j.chemosphere.2020.128350

Park, S., and Sung, K. (2020). Leaching Potential of Multi-metal-Contaminated Soil in Chelate-Aided Remediation. Water, Air, and Soil Pollution, 231(2), 1–10. doi.org/10.1007/s11270-020-4412-6

Peng, H., Chen, Y., Weng, L., Ma, J., Ma, Y., Li, Y., and Islam, M. S. (2019). Comparisons of heavy metal input inventory in agricultural soils in North and South China: A review. Science of the Total Environment, 660, 776–786. doi.org/10.1016/j.scitotenv.2019.01.066

Peng, M., Zhao, C., Ma, H., Yang, Z., Yang, K., Liu, F., Li, K., Yang, Z., Tang, S., Guo, F., Liu, X., and Cheng, H. (2020). Heavy metal and Pb isotopic compositions of soil and maize from a major agricultural area in Northeast China: Contamination assessment and source apportionment. Journal of Geochemical Exploration, 208, 1–10. doi.org/10.1016/j.gexplo.2019.106403

Pereira, P., Barceló, D., and Panagos, P. (2020). Soil and water threats in a changing environment. Environmental Research, 186, 1–18. doi.org/10.1016/j.envres.2020.109501

Poustie, A., Yang, Y., Verburg, P., Pagilla, K., and Hanigan, D. (2020). Reclaimed wastewater as a viable water source for agricultural irrigation: A review of food crop growth inhibition and promotion in the context of environmental change. Science of the Total Environment, 739, 1–12. doi.org/10.1016/j.scitotenv.2020.139756

Qin, G., Niu, Z., Yu, J., Li, Z., Ma, J., and Xiang, P. (2021). Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere, 267, 129205. doi.org/10.1016/j.chemosphere.2020.129205

Qureshi, A. S., Hussain, M. I., Ismail, S., and Khan, Q. M. (2016). Evaluating heavy metal accumulation and potential health risks in vegetables irrigated with treated wastewater. Chemosphere, 163, 54–61. doi.org/10.1016/j.chemosphere.2016.07.073

Rai, P. K., Lee, J., Brown, R. J. C., and Kim, K. H. (2021). Environmental fate, ecotoxicity biomarkers, and potential health effects of micro- and nano-scale plastic contamination. Journal of Hazardous Materials, 403, 123910. doi.org/10.1016/j.jhazmat.2020.123910

Rehman, ur K., Bukhari, S. M., Andleeb, S., Mahmood, A., Erinle, K. O., Naeem, M. M., and Imran, Q. (2019). Ecological risk assessment of heavy metals in vegetables irrigated with groundwater and wastewater: The particular case of Sahiwal district in Pakistan. Agricultural Water Management, 226, 1–7. doi.org/10.1016/j.agwat.2019.105816

Rezapour, S., Atashpaz, B., Moghaddam, S. S., and Damalas, C. A. (2019). Heavy metal bioavailability and accumulation in winter wheat (Triticum aestivum L.) irrigated with treated wastewater in calcareous soils. Science of the Total Environment, 656, 261–269. doi.org/10.1016/j.scitotenv.2018.11.288

Rizwan, M. S., Imtiaz, M., Zhu, J., Yousaf, B., Hussain, M., Ali, L., Ditta, A., Zahid Ihsan, M., Huang, G., Ashraf, M., and Hu, H. (2021). Immobilization of Pb and Cu by organic and inorganic amendments in contaminated soil. Geoderma, 385, 114803. doi.org/10.1016/j.geoderma.2020.114803

Rufí-Salís, M., Brunnhofer, N., Petit-Boix, A., Gabarrell, X., Guisasola, A., and Villalba, G. (2020). Can wastewater feed cities? Determining the feasibility and environmental burdens of struvite recovery and reuse for urban regions. Science of the Total Environment, 737, 1–9. doi.org/10.1016/j.scitotenv.2020.139783

Ruszkiewicz, J. A., Tinkov, A. A., Skalny, A. V., Siokas, V., Dardiotis, E., Tsatsakis, A., Bowman, A. B., da Rocha, J. B. T., and Aschner, M. (2019). Brain diseases in changing climate. Environmental Research, 177(August), 108637. doi.org/10.1016/j.envres.2019.108637

Saadati, M., Soleimani, M., Sadeghsaba, M., and Hemami, M. R. (2020). Bioaccumulation of heavy metals (Hg, Cd and Ni) by sentinel crab (Macrophthalmus depressus) from sediments of Mousa Bay, Persian Gulf. Ecotoxicology and Environmental Safety, 191, 1–7. doi.org/10.1016/j.ecoenv.2019.109986

Safayet, M., Arefin, M. F., and Hasan, M. M. U. (2017). Present practice and future prospect of rooftop farming in Dhaka city: A step towards urban sustainability. Journal of Urban Management, 6(2), 56–65. doi.org/10.1016/j.jum.2017.12.001

Sagbara, G., Zabbey, N., Sam, K., and Nwipie, G. N. (2020). Heavy metal concentration in soil and maize (Zea mays L.) in partially reclaimed refuse dumpsite ‘borrow-pit’ in Port Harcourt, Nigeria. Environmental Technology and Innovation, 18, 1–12. doi.org/10.1016/j.eti.2020.100745

Sartison, K., and Artmann, M. (2020). Edible cities – An innovative nature-based solution for urban sustainability transformation? An explorative study of urban food production in German cities. Urban Forestry and Urban Greening, 49, 126604. doi.org/10.1016/j.ufug.2020.126604

Sawut, R., Kasim, N., Maihemuti, B., Hu, L., Abliz, A., Abdujappar, A., and Kurban, M. (2018). Pollution characteristics and health risk assessment of heavy metals in the vegetable bases of northwest China. Science of the Total Environment, 642, 864–878. doi.org/10.1016/j.scitotenv.2018.06.034.

Sayo, S., Kiratu, J. M., and Nyamato, G. S. (2020). Heavy metal concentrations in soil and vegetables irrigated with sewage effluent: A case study of Embu sewage treatment plant, Kenya. Scientific African, 8, 1–8. doi.org/10.1016/j.sciaf.2020.e00337

Sedlacko, E. M., Chaparro, J. M., Heuberger, A. L., Cath, T. Y., and Higgins, C. P. (2020). Effect of produced water treatment technologies on irrigation-induced metal and salt accumulation in wheat (Triticum aestivum) and sunflower (Helianthus annuus). Science of the Total Environment, 740, 1–13. doi.org/10.1016/j.scitotenv.2020.140003

Shaharoona, B., Al-Ismaily, S., Al-Mayahi, A., Al-Harrasi, N., Al-Kindi, R., Al-Sulaimi, A., Al-Busaidi, H., and Al-Abri, M. (2019). The role of urbanization in soil and groundwater contamination by heavy metals and pathogenic bacteria: A case study from Oman. Heliyon, 5(5), 1–13. doi.org/10.1016/j.heliyon.2019.e01771

Sharifan, H., Moore, J., and Ma, X. (2020). Zinc oxide (ZnO) nanoparticles elevated iron and copper contents and mitigated the bioavailability of lead and cadmium in different leafy greens. Ecotoxicology and Environmental Safety, 191, 1–8. doi.org/10.1016/j.ecoenv.2020.110177

Song, S., Arora, S., Laserna, A. K. C., Shen, Y., Thian, B. W. Y., Cheong, J. C., Tan, J. K. N., Chiam, Z., Fong, S. L., Ghosh, S., Ok, Y. S., Li, S. F. Y., Tan, H. T. W., Dai, Y., and

Wang, C. H. (2020). Biochar for urban agriculture: Impacts on soil chemical characteristics and on Brassica rapa growth, nutrient content and metabolism over multiple growth cycles. Science of the Total Environment, 727, 138742. doi.org/10.1016/j.scitotenv.2020.138742

Sun, L., Guo, D., Liu, K., Meng, H., Zheng, Y., Yuan, F., and Zhu, G. (2019). Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan, China. Catena, 175, 101–109. doi.org/10.1016/j.catena.2018.12.014

Taghipour, M., and Jalali, M. (2019). Impact of some industrial solid wastes on the growth and heavy metal uptake of cucumber (Cucumis sativus L.) under salinity stress. Ecotoxicology and Environmental Safety, 182, 1–11. doi.org/10.1016/j.ecoenv.2019.06.030

Thakali, A., and Macrae, J. D. (2021). A review of chemical and microbial contamination in food: What are the threats to a circular food system ? Environmental Research, 194, 110635. doi.org/10.1016/j.envres.2020.110635

Tian, S., Liang, S., Qiao, K., Wang, F., Zhang, Y., and Chai, T. (2019). Co-expression of multiple heavy metal transporters changes the translocation, accumulation, and potential oxidative stress of Cd and Zn in rice (Oryza sativa). Journal of Hazardous Materials, 380, 1–8. doi.org/10.1016/j.jhazmat.2019.120853

Turan, V., Khan, S. A., Mahmood-ur-Rahman, Iqbal, M., Ramzani, P. M. A., and Fatima, M. (2018). Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan. Ecotoxicology and Environmental Safety, 161, 409–419. doi.org/10.1016/j.ecoenv.2018.05.082

Ulm, F., Avelar, D., Hobson, P., Penha-Lopes, G., Dias, T., Máguas, C., and Cruz, C. (2019). Sustainable urban agriculture using compost and an open-pollinated maize variety. Journal of Cleaner Production, 212, 622–629. doi.org/10.1016/j.jclepro.2018.12.069

Vardhan, K. H., Kumar, P. S., and Panda, R. C. (2019). A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids, 290, 111197. doi.org/10.1016/j.molliq.2019.111197

Vareda, J. P., Valente, A. J. M., and Durães, L. (2019). Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. Journal of Environmental Management, 246, 101–118. doi.org/10.1016/j.jenvman.2019.05.126

Waheed, S., Ahmad, R., Irshad, M., Khan, S. A., Mahmood, Q., and Shahzad, M. (2021). Ca2SiO4 chemigation reduces cadmium localization in the subcellular leaf fractions of spinach (Spinacia oleracea L.) under cadmium stress. Ecotoxicology and Environmental Safety, 207, 111230. doi.org/10.1016/j.ecoenv.2020.111230

Wang, J., Yi, X., Cui, J., Chang, Y., Yao, D., Zhou, D., Yang, J., Zhou, J., Chan, A., Wang, W., and Yin, X. (2019). Nonlinear effects of increasing nitrogen deposition on rice growth and heavy metal uptake in a red soil ecosystem of southeastern China. Science of the Total Environment, 670, 1060–1067. doi.org/10.1016/j.scitotenv.2019.03.245

Wang, X., Li, X., Yan, X., Tu, C., and Yu, Z. (2021). Environmental risks for application of iron and steel slags in soils in China: A review. Pedosphere, 31(1), 28–42. doi.org/10.1016/S1002-0160(20)60058-3

Weber, A. M., Mawodza, T., Sarkar, B., and Menon, M. (2019). Assessment of potentially toxic trace element contamination in urban allotment soils and their uptake by onions: A preliminary case study from Sheffield, England. Ecotoxicology and Environmental Safety, 170, 156–165. doi.org/10.1016/j.ecoenv.2018.11.090

Wei, X., Huang, W., Liu, D., Liao, L., Wang, Z., and Li, W. (2019). Bioleaching of Heavy Metals from Pig Manure Employing Indigenous Sulfur-Oxidizing Bacteria: Effects of Solid Content. Water, Air, and Soil Pollution, 230(2), 1–12. doi.org/10.1007/s11270-019-4087-z

Wielemaker, R. C., Weijma, J., and Zeeman, G. (2018). Harvest to harvest: Recovering nutrients with New Sanitation systems for reuse in Urban Agriculture. Resources, Conservation and Recycling, 128, 426–437. doi.org/10.1016/j.resconrec.2016.09.015

Wielemaker, R., Oenema, O., Zeeman, G., and Weijma, J. (2019). Fertile cities: Nutrient management practices in urban agriculture. Science of the Total Environment, 668, 1277–1288. doi.org/10.1016/j.scitotenv.2019.02.424

Wu, J., Song, Q., Zhou, J., Wu, Y., Liu, X., Liu, J., Zhou, L., Wu, Z., and Wu, W. (2021). Cadmium threshold for acidic and multi-metal contaminated soil according to Oryza sativa L. Cadmium accumulation: Influential factors and prediction model. Ecotoxicology and Environmental Safety, 208, 111420. doi.org/10.1016/j.ecoenv.2020.111420

Xia, X., Wu, S., Zhou, Z., and Wang, G. (2021). Microbial Cd(II) and Cr(VI) resistance mechanisms and application in bioremediation. Journal of Hazardous Materials, 401, 123685. doi.org/10.1016/j.jhazmat.2020.123685

Yu, Y., Zhu, X., Li, L., Lin, B., Xiang, M., Zhang, X., Chen, X., Yu, Z., Wang, Z., and Wan, Y. (2019). Health implication of heavy metals exposure via multiple pathways for residents living near a former e-waste recycling area in China: A comparative study. Ecotoxicology and Environmental Safety, 169, 178–184. doi.org/10.1016/j.ecoenv.2018.10.115

Zhang, Q., Zou, D., Zeng, X., Li, L., Wang, A., Liu, F., Wang, H., Zeng, Q., and Xiao, Z. (2020). Effect of the direct use of biomass in agricultural soil on heavy metals __ activation or immobilization? Environmental Pollution, In press, 115989. doi.org/10.1016/j.envpol.2020.115989

Zhen, H., Gao, W., Jia, L., Qiao, Y., and Ju, X. (2020). Environmental and economic life cycle assessment of alternative greenhouse vegetable production farms in peri-urban Beijing, China. Journal of Cleaner Production, 269, 1–10. doi.org/10.1016/j.jclepro.2020.122380

Zhen, H., Jia, L., Huang, C., Qiao, Y., Li, J., Li, H., Chen, Q., and Wan, Y. (2020). Long-term effects of intensive application of manure on heavy metal pollution risk in protected-field vegetable production. Environmental Pollution, 263, 1–10. doi.org/10.1016/j.envpol.2020.114552

Zhou, Y., Jia, Z., Wang, J., Chen, L., Zou, M., Li, Y., and Zhou, S. (2019). Heavy metal distribution, relationship and prediction in a wheat-rice rotation system. Geoderma, 354, 1–11. doi.org/10.1016/j.geoderma.2019.113886

Zhu, Y., Wang, L., Zhao, X., Lian, J., and Zhang, Z. (2020). Accumulation and potential sources of heavy metals in soils of the Hetao area, Inner Mongolia, China. Pedosphere, 30(2), 244–252. doi.org/10.1016/S1002-0160(17)60306-0

Zwolak, A., Sarzyńska, M., Szpyrka, E., and Stawarczyk, K. (2019). Sources of Soil Pollution by Heavy Metals and Their Accumulation in Vegetables: a Review. Water, Air, and Soil Pollution, 230(7), 1–9. doi.org/10.1007/s11270-019-4221-y.

How to Cite
AbdullahiN., IgweE. C., DandagoM. A., & UmarN. B. (2021). HEAVY METALS IN FOOD CROPS: IDEAL SOURCES AND ROLES OF URBAN AGRICULTURE IN FACILITATING THEIR CONSUMPTION- A REVIEW. FUDMA JOURNAL OF SCIENCES, 5(2), 34 - 45. https://doi.org/10.33003/fjs-2021-0502-520

Most read articles by the same author(s)