DEVELOPMENT OF BIVARIATE INVERTED NADARAJAH HAGHIGHI DISTRIBUTIONS: COPULA APPROACH
DOI:
https://doi.org/10.33003/fjs-2026-1001-4527Keywords:
Inverted Nadarajah-Haghighi Distribution, Bivariate Models, Copula Function, Inference Function for MarginsAbstract
Bivariate lifetime models are crucial in reliability analysis and survival research, necessitating flexible marginal distributions and dependence structures to accurately depict real-world data. This paper introduces a family of five-parameter bivariate distributions derived from the Inverted Nadarajah–Haghighi distribution by the use of copula functions, motivated by the inadequacies of current bivariate models in representing varied dependence structures. The Farlie–Gumbel–Morgenstern (FGM) and Plackett copulas are utilized to model the dependent structure.The primary objective of this work is to develop these new bivariate models, investigate their statistical properties, and assess the efficiency of parameter estimation methods. Parameters are estimated using Maximum Likelihood Estimation (MLE) and the Inference Function for Margins (IFM) approach, and the efficiency of the two methods is compared. The results indicate that MLE provides more efficient estimation of the copula parameter for both the FGM and Plackett copulas.To illustrate the applicability of the proposed models, two real data sets are analyzed. The findings show that the Bivariate Inverted Nadarajah–Haghighi distribution based on the Plackett copula offers a better fit than the corresponding model based on the FGM copula. Further comparison with the Bivariate Generalized Exponential Distribution reveals that while the latter performs better under the FGM copula, the proposed model under the Plackett copula outperforms it, yielding lower AIC and BIC values. These results demonstrate the flexibility and practical relevance of the proposed models for analyzing dependent lifetime data.
References
Achcar, J. A., Moala, F. A., Tarumoto, M. H., & Coladello, L. F. (2015). A bivariate generalized exponential distribution derived from copula functions in the presence of censored data and covariates. Pesquisa Operacional, 35, 165-186.
Al turk, L. I., Abd Elaal M.K., & Jarwan R.S. (2017). Inference of Bivariate Generalized Exponential Distribution Based on Copula Functions. Applied Mathematical Sciences, 11: 1155 – 1186.
Ali, M.M., Mikhail, N.N. & Haq, M.S. (1978). A class of bivariate distributions including the bivariate logistic. J. Multivariate Anal. 8, 405-412.
Aliyu, Y., & Usman, U. (2023). On Bivariate Nadarajah-Haghighi Distribution derived from Farlie-Gumbel-Morgenstern Copula in the Presence of Covariates. Journal of the Nigerian Society of Physical Sciences, 871-871.
Almetwally, E. M., Muhammed, H. Z., & El-Sherpieny, E. S. A. (2020). Bivariate Weibull distribution: properties and different methods of estimation. Annals of Data Science, 7, 163-193.
AL-Moisheer, A. S., Alotaibi, R. M., Alomani G. A. & Rezk, H. (2020). Bivariate Mixture of Inverse Weibull Distribution: Properties and Estimation. Mathematical Problems in Engineering.
Ariff, N.M., Jemain, A.A., Ibrahim K. & Wan Zin W.Z., (2012). IDF relationships using bivariate copula for storm events in Peninsular Malaysia. Journal of Hydrology 470–471 (2012) 158–171
Bai, X., Shi, Y., Liu, B., & Fu, Q. (2019). Statistical inference of Marshall-Olkin bivariate Weibull distribution with three shocks based on progressive interval censored data. Communications in Statistics-Simulation and Computation, 48(3), 637-654.
Bidounga, R., Maloumbi, E. G., Kitoti R.F.& Mizere, D. (2020). The New Bivariate Conway-Maxwell-Poisson Distribution Obtained by the crossing Method. International Journal of Statistics and Probability.
Coelho-Barros, E. A., Achcar, J.A. & Mazucheli, J. (2016). Bivariate Weibull Distributions Derived from Copula Functions in The Presence of Cure Fraction and Censored Data. Journal of Data Science 14(2016), 295-316.
Eliwa, M. S., & El-Morshedy, M. (2018). Bivariate discrete inverse Weibull distribution. arXiv preprint arXiv:1808.07748.
El-Sherpieny, E. S. A., Muhammed, H. Z., & Almetwally, E. M. (2022). Progressive Type-II censored samples for bivariate Weibull distribution with economic and medical applications. Annals of Data Science, 1-35.
Genest C. & Favre A. C. (2007). Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask. J. Hydrol. Eng. 2007.12:347-368.
Ghosh S. (2010). Modelling bivariate rainfall distribution and generating bivariate correlated rainfall data in neighbouring meteorological subdivisions using copula. Hydrol. Process. 24, 3558–3567 (2010)
Gumbel, E. (1960). Bivariate exponential distributions. Journal of the American Statistical Association, 55: 698–707.
Gupta, R.D. & Kundu, D. (1999). Generalized exponential distribution. Australian and New Zealand Journal of Statistics, 41: 173–188.
Kao S. & Govindaraju, R.S. (2010). A copula-based joint deficit index for droughts. Journal of Hydrology 380 (2010) 121–134.
Kong, C.Y., Jamaluddin, S., Fadhilah, Y. & Foo, H.M. (2015). Bivariate Copula in Fitting rainfall data. AIP conference proceedings 1605,986(2014).
Kundu, D., & Gupta, A. K. (2017). On bivariate inverse Weibull distribution.
Mondal, S., & Kundu, D. (2020). A bivariate inverse Weibull distribution and its application in complementary risks model. Journal of Applied Statistics, 47(6), 1084-1108.
Nelsen, R.B., (1999). An introduction to copulas. Springer-Verlag, New York.
Pathak, A. K., Arshad, M., Azhad, Q. J., Khetan, M., & Pandey, A. (2021). A novel bivariate generalized weibull distribution with properties and applications. arXiv preprint arXiv:2107.11998
Peres, M. V. D. O., Achcar, J. A., & Martinez, E. Z. (2018). Bivariate modified Weibull distribution derived from Farlie-Gumbel-Morgenstern copula: a simulation study. Electronic Journal of Applied Statistical Analysis, 11(2), 463-488.
Peres, M.V., Achcar,J.A.& Martinez, E. Z.(2018). Bivariate modified Weibull distribution derived from Farlie-Gumbel-Morgenstern copula. Electronic Journal of Applied Statistical Analysis, 11: 463-488
Renard, B., & Lang, M. (2007). Use of a Gaussian copula for multivariate extreme value analysis: Some case studies in hydrology. Advances in Water Resources, 30(4), 897-912
Renard, B., & Lang, M. (2007). Use of a Gaussian copula for multivariate extreme value analysis: Some case studies in hydrology. Advances in Water Resources, 30(4), 897-912.
Requena A.I., Mediero L. & Garrote L. (2013). A bivariate return period based on copulas for hydrologic dam design: accounting for reservoir routing in risk estimation. Hydrol. Earth Syst. Sci., 17, 3023–3038, 2013.
Seng, H.O., Gupta R. C. & Sim S. Z. (2020). Bivariate Conway–Maxwell Poisson Distributions with Given Marginals and Correlation.Journal of Statistical Theory and Practice, (2021) 15:10.
Sklar A. (1959). Fonctions de repartition `a n-dimensions et leurs marges, Publications de l’Institut Statistique de l’Université de Paris, 8 (1959), 229 – 231.
Thomas P. Y. & Jose, J. (2020). On Weibull–Burr impounded bivariate distribution. Japanese Journal of Statistics and Data Science. https://doi.org/10.1007/s42081-020-00085-w
Usman, A., Ishaq, A. I., Suleiman, A. A., Othman, M., Daud, H., & Aliyu, Y. (2023). Univariate and Bivariate Log-Topp-Leone Distribution Using Censored and Uncensored Datasets. In Computer Sciences & Mathematics Forum (Vol. 7, No. 1, p. 32). MDPI.
Usman, U., & Aliyu, Y., (2022). Bivariate Nadarajah-Haghighi distribution derived from copula functions: Bayesian estimation and applications. Benin journal of statistics.
Zhang, L. S. V. P., & Singh, V. P. (2006). Bivariate flood frequency analysis using the copula method. Journal of hydrologic engineering, 11(2), 150-164.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2026 Najmuddeen Muhammad Sani, Hussaini Garba Dikko, Yakubu Aliyu, Tasi’u Musa, Abubakar Usman

This work is licensed under a Creative Commons Attribution 4.0 International License.