THE ODD RAYLEIGH-G FAMILY OF DISTRIBUTION: PROPERTIES, APPLICATIONS, AND PERFORMANCE COMPARISONS

Authors

  • Ibrahim Abubakar Sadiq
    Department of Statistics, Ahmadu Bello University, Zaria 810107, Nigeria.
  • Saminu Garba
    Department of Statistics, Ahmadu Bello University, Zaria 810107, Nigeria.
  • Jibril Yahaya Kajuru
    Department of Statistics, Faculty of Physical Sciences, Ahmadu Bello University, Zaria
  • Abubakar Usman
    Department of Statistics, Faculty of Physical Sciences, Ahmadu Bello University, Zaria
  • Aliyu Ismail Ishaq
    Department of Statistics, Ahmadu Bello University, Zaria 810107, Nigeria.
  • Yahaya Zakari
    Department of Statistics, Ahmadu Bello University, Zaria 810107, Nigeria.
  • Sani Ibrahim Doguwa
    Department of Statistics, Ahmadu Bello University, Zaria 810107, Nigeria.
  • Abubakar Yahaya

Keywords:

Odd Link Function, Rayleigh, Weibull, Mortality, Advertisement, MLE, Simulation, Information Criterion, Survival Analysis, Probability

Abstract

This study introduces the Odd Rayleigh-G (OR-G) family of distribution and explores its mathematical properties, applications, and performance comparisons. The Odd Rayleigh-Weibull distribution (ORWD) is developed by incorporating the "Odd" transformation into the Rayleigh and Weibull distribution, resulting in a flexible model suitable for various real-life and survival data applications. The probability density function (PDF), cumulative distribution function (CDF), hazard function, and survival function of the ORWD are derived and analyzed. Parameter estimation is performed using the Maximum Likelihood Estimation (MLE) method, and the performance of the ORWD is assessed through simulation studies. The simulations for parameter estimates at 100 sample sizes were conducted and the plot of the simulated data on the PDF, CDF, survival and hazard function demonstrate a comprehensive view of the characteristics of the Odd Rayleigh Weibull distribution. This information is useful for understanding the behaviour of the distribution and for applications in reliability analysis and survival studies. The results demonstrate the consistency and efficiency of the MLE method for the ORWD. The ORWD is compared with other distributions, including the Weibull, Power Rayleigh, and Rayleigh distributions, using goodness-of-fit measures such as the Akaike Information Criterion (AIC = 111.0238 and 87.4294), Bayesian Information Criterion (BIC = 117.2564 and 96.0320), and Kolmogorov-Smirnov (KS = 0.9559 and 0.9889) test with p-values (p-val = 7.772e-16 and 2.2e-16). The ORWD shows superior performance in fitting the mortality dataset and the Reddit advertisement dataset, highlighting its potential for modelling complex data structures. Overall, this study provides a comprehensive framework for the...

Dimensions

Agu, F. I., Eghwerido, J. T., & Nziku, C. K. (2022). The alpha power Rayleigh-G family of distributions. Mathematica Slovaca, 72(4), 1047-1062.

Ateeq, K., Qasim, T. B., & Alvi, A. R. (2019). An Extension of Rayleigh Distribution and Applications. Cogent Mathematics & Statistics, 6(1), 1622191.

Almongy, H. M., Almetwally, E. M., Aljohani, H. M., Alghamdi, A. S., & Hafez, E. H. (2021). A New Extended Rayleigh Distribution with Applications of COVID-19 Data. Results in Physics, 23, 104012.

Balakrishnan, K. (2019). Exponential distribution: theory, methods and applications. Routledge.

Barranco-Chamorro, I., Iriarte, Y. A., Gmez, Y. M., Astorga, J. M., & Gmez, H. W. (2021). A generalized Rayleigh family of distributions based on the modified slash model. Symmetry, 13(7), 1226.

Bhat, A. A., & Ahmad, S. P. (2020). A New Generalization of Rayleigh Distribution: Properties and Applications. Pakistan journal of statistics, 36(3).

Coles, S., Bawa, J., Trenner, L., & Dorazio, P. (2001). An Introduction to Statistical Modelling of Extreme Values (Vol. 208, p. 208). London: Springer.

De Moivre A (1756) The Doctrine of Chances: Or, A Method of Calculating the Probabilities of Events in Play, Vol. 1 Chelsea Publishing Company, London.

Elgarhy, M., Johannssen, A., & Kayid, M. (2024). An extended Rayleigh Weibull Model with Actuarial Measures and Applications. Heliyon.

Gupta, R. C., Gupta, P. L., & Gupta, R. D. (1998). Modelling Failure Time Data by Lehman Alternatives. Communications in Statistics-Theory and Methods, 27(4), 887-904.

Habu, L., Usman, A., Sadiq, I. A., & Abdullahi, U. A. (2024). Estimation of Extension of Topp-Leone Distribution using Two Different Methods: Maximum Product Spacing and Maximum Likelihood Estimate. UMYU Scientifica, 3(2), 133-138.

Hafez, R. H.; Helmy, N. M.; Abd El-Kader, R. E. and AL-Sayed, N. T. (2025). A New Generalization of Power Rayleigh Distribution: Properties and Estimation Based on Type II Censoring, Scientific Journal for Financial and Commercial Studies and Research, Faculty of Commerce, Damietta University, 6(1)1, 625-654.

Haight, Frank A. (1967), Handbook of the Poisson Distribution, New York, NY, USA: John Wiley & Sons, ISBN 978-0-471-33932-8

Nadarajah, S., & Kotz, S. (2008). Intensity models for nonRayleigh speckle distributions. International Journal of Remote Sensing, 29(2), 529-541.

Obafemi, A. A., Usman, A., Sadiq, I. A., & Okon, U. (2024). A New Extension of Topp-Leone Distribution (NETD) Using Generalized Logarithmic Function. UMYU Scientifica, 3(4), 127133. https://doi.org/10.56919/usci.2434.011

Obi, C. D., Chukwuma, P. O., Igbokwe, C. P., Ibeakuzie, P. O., & Anabike, I. C. (2024). A Novel Extension of Rayleigh Distribution: Characterization, Estimation, Simulations and Applications. Journal of Xidian University, 18(7), 177-188.

Ogunde, A. A., Dutta, S., & Almetawally, E. M. (2024). Half Logistic Generalized Rayleigh Distribution for Modeling Hydrological Data. Annals of Data Science, 1-28.

Rayleigh, L. (1880). On the Resultant of a Large Number of Vibrations of the same Pitch and Arbitrary Phase. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science.

Sadiq, I. A., Doguwa, S. I. S., Yahaya, A., & Garba, J. (2023a). New Generalized Odd Frchet Odd Exponential-G Family of Distribution with Statistical Properties and Applications. FUDMA Journal of Sciences, 7(6), 41-51. https://doi.org/10.33003/fjs-2023-0706-2096

Sadiq, I. A., Doguwa, S. I. S., Yahaya, A., & Usman, A. (2023b). Development of New Generalized Odd Frchet-Exponentiated-G Family of Distribution. UMYU Scientifica, 2(4), 169-178. http://dx.doi.org/10.56919/usci.2324.021

Sadiq, I. A., Doguwa, S. I., Yahaya, A., & Garba, J. (2022). New Odd Frechet-G Family of Distribution with Statistical Properties and Applications. AFIT Journal of Science and Engineering Research, 2022 2(2): 84-103

Sadiq, I. A., Doguwa, S. I., Yahaya, A., & Garba, J. (2023c). New Generalized Odd Frechet-G (NGOF-G) Family of Distribution with Statistical Properties and Applications. UMYU Scientifica, 2(3), 100-107. http://dx.doi.org/10.56919/usci.2323.016

Shala, M., & Merovci, F. (2024). A New Three-Parameter Inverse Rayleigh Distribution: Simulation and Application to Real Data. Symmetry, 16(5), 634.

Shen, Z., Alrumayh, A., Ahmad, Z., Abu-Shanab, R., Al-Mutairi, M., & Aldallal, R. (2022). A New Generalized Rayleigh Distribution with Analysis of Big Data of an Online Community. Alexandria Engineering Journal, 61(12), 11523-11535.

Thomas W. Keelin (2016) The Meta log Distributions. Decision Analysis 13(4):243-277. http://dx.doi.org/10.1287/deca.2016.0338.

Yahaya, A., & Doguwa, S. I. S. (2021). On Theoretical Study of Rayleigh-Exponentiated Odd Generalized-X Family Of Distributions. Transactions of the Nigerian Association of Mathematical Physics, 14.

Yirsaw, A. G., & Goshu, A. T. (2024). Extended Rayleigh Probability Distribution to Higher Dimensions. Journal of Probability and Statistics, 2024(1), 7677855

Published

31-12-2024

How to Cite

THE ODD RAYLEIGH-G FAMILY OF DISTRIBUTION: PROPERTIES, APPLICATIONS, AND PERFORMANCE COMPARISONS. (2024). FUDMA JOURNAL OF SCIENCES, 8(6), 514-527. https://doi.org/10.33003/fjs-2024-0806-3011

How to Cite

THE ODD RAYLEIGH-G FAMILY OF DISTRIBUTION: PROPERTIES, APPLICATIONS, AND PERFORMANCE COMPARISONS. (2024). FUDMA JOURNAL OF SCIENCES, 8(6), 514-527. https://doi.org/10.33003/fjs-2024-0806-3011

Most read articles by the same author(s)