THE ODD RAYLEIGH-G FAMILY OF DISTRIBUTION: PROPERTIES, APPLICATIONS, AND PERFORMANCE COMPARISONS
Abstract
This study introduces the Odd Rayleigh-G (OR-G) family of distribution and explores its mathematical properties, applications, and performance comparisons. The Odd Rayleigh-Weibull distribution (ORWD) is developed by incorporating the "Odd" transformation into the Rayleigh and Weibull distribution, resulting in a flexible model suitable for various real-life and survival data applications. The probability density function (PDF), cumulative distribution function (CDF), hazard function, and survival function of the ORWD are derived and analyzed. Parameter estimation is performed using the Maximum Likelihood Estimation (MLE) method, and the performance of the ORWD is assessed through simulation studies. The simulations for parameter estimates at 100 sample sizes were conducted and the plot of the simulated data on the PDF, CDF, survival and hazard function demonstrate a comprehensive view of the characteristics of the Odd Rayleigh Weibull distribution. This information is useful for understanding the behaviour of the distribution and for applications in reliability analysis and survival studies. The results demonstrate the consistency and efficiency of the MLE method for the ORWD. The ORWD is compared with other distributions, including the Weibull, Power Rayleigh, and Rayleigh distributions, using goodness-of-fit measures such as the Akaike Information Criterion (AIC = 111.0238 and 87.4294), Bayesian Information Criterion (BIC = 117.2564 and 96.0320), and Kolmogorov-Smirnov (KS = 0.9559 and 0.9889) test with p-values (p-val = 7.772e-16 and 2.2e-16). The ORWD shows superior performance in fitting the mortality dataset and the Reddit advertisement dataset, highlighting its potential for modelling complex data structures. Overall, this study provides a comprehensive framework for the...
References
Agu, F. I., Eghwerido, J. T., & Nziku, C. K. (2022). The alpha power Rayleigh-G family of distributions. Mathematica Slovaca, 72(4), 1047-1062. DOI: https://doi.org/10.1515/ms-2022-0073
Ateeq, K., Qasim, T. B., & Alvi, A. R. (2019). An Extension of Rayleigh Distribution and Applications. Cogent Mathematics & Statistics, 6(1), 1622191. DOI: https://doi.org/10.1080/25742558.2019.1622191
Almongy, H. M., Almetwally, E. M., Aljohani, H. M., Alghamdi, A. S., & Hafez, E. H. (2021). A New Extended Rayleigh Distribution with Applications of COVID-19 Data. Results in Physics, 23, 104012. DOI: https://doi.org/10.1016/j.rinp.2021.104012
Balakrishnan, K. (2019). Exponential distribution: theory, methods and applications. Routledge. DOI: https://doi.org/10.1201/9780203756348
Barranco-Chamorro, I., Iriarte, Y. A., Gmez, Y. M., Astorga, J. M., & Gmez, H. W. (2021). A generalized Rayleigh family of distributions based on the modified slash model. Symmetry, 13(7), 1226. DOI: https://doi.org/10.3390/sym13071226
Bhat, A. A., & Ahmad, S. P. (2020). A New Generalization of Rayleigh Distribution: Properties and Applications. Pakistan journal of statistics, 36(3).
Coles, S., Bawa, J., Trenner, L., & Dorazio, P. (2001). An Introduction to Statistical Modelling of Extreme Values (Vol. 208, p. 208). London: Springer. DOI: https://doi.org/10.1007/978-1-4471-3675-0
De Moivre A (1756) The Doctrine of Chances: Or, A Method of Calculating the Probabilities of Events in Play, Vol. 1 Chelsea Publishing Company, London. DOI: https://doi.org/10.4324/9780203041352-1
Elgarhy, M., Johannssen, A., & Kayid, M. (2024). An extended Rayleigh Weibull Model with Actuarial Measures and Applications. Heliyon. DOI: https://doi.org/10.1016/j.heliyon.2024.e32143
Gupta, R. C., Gupta, P. L., & Gupta, R. D. (1998). Modelling Failure Time Data by Lehman Alternatives. Communications in Statistics-Theory and Methods, 27(4), 887-904. DOI: https://doi.org/10.1080/03610929808832134
Habu, L., Usman, A., Sadiq, I. A., & Abdullahi, U. A. (2024). Estimation of Extension of Topp-Leone Distribution using Two Different Methods: Maximum Product Spacing and Maximum Likelihood Estimate. UMYU Scientifica, 3(2), 133-138. DOI: https://doi.org/10.56919/usci.2432.014
Hafez, R. H.; Helmy, N. M.; Abd El-Kader, R. E. and AL-Sayed, N. T. (2025). A New Generalization of Power Rayleigh Distribution: Properties and Estimation Based on Type II Censoring, Scientific Journal for Financial and Commercial Studies and Research, Faculty of Commerce, Damietta University, 6(1)1, 625-654. DOI: https://doi.org/10.21608/cfdj.2024.325180.2062
Haight, Frank A. (1967), Handbook of the Poisson Distribution, New York, NY, USA: John Wiley & Sons, ISBN 978-0-471-33932-8
Nadarajah, S., & Kotz, S. (2008). Intensity models for nonRayleigh speckle distributions. International Journal of Remote Sensing, 29(2), 529-541. DOI: https://doi.org/10.1080/01431160600993462
Obafemi, A. A., Usman, A., Sadiq, I. A., & Okon, U. (2024). A New Extension of Topp-Leone Distribution (NETD) Using Generalized Logarithmic Function. UMYU Scientifica, 3(4), 127133. https://doi.org/10.56919/usci.2434.011 DOI: https://doi.org/10.56919/usci.2434.011
Obi, C. D., Chukwuma, P. O., Igbokwe, C. P., Ibeakuzie, P. O., & Anabike, I. C. (2024). A Novel Extension of Rayleigh Distribution: Characterization, Estimation, Simulations and Applications. Journal of Xidian University, 18(7), 177-188.
Ogunde, A. A., Dutta, S., & Almetawally, E. M. (2024). Half Logistic Generalized Rayleigh Distribution for Modeling Hydrological Data. Annals of Data Science, 1-28. DOI: https://doi.org/10.1007/s40745-024-00527-2
Rayleigh, L. (1880). On the Resultant of a Large Number of Vibrations of the same Pitch and Arbitrary Phase. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. DOI: https://doi.org/10.1080/14786448008626893
Sadiq, I. A., Doguwa, S. I. S., Yahaya, A., & Garba, J. (2023a). New Generalized Odd Frchet Odd Exponential-G Family of Distribution with Statistical Properties and Applications. FUDMA Journal of Sciences, 7(6), 41-51. https://doi.org/10.33003/fjs-2023-0706-2096 DOI: https://doi.org/10.33003/fjs-2023-0706-2096
Sadiq, I. A., Doguwa, S. I. S., Yahaya, A., & Usman, A. (2023b). Development of New Generalized Odd Frchet-Exponentiated-G Family of Distribution. UMYU Scientifica, 2(4), 169-178. http://dx.doi.org/10.56919/usci.2324.021 DOI: https://doi.org/10.56919/usci.2324.021
Sadiq, I. A., Doguwa, S. I., Yahaya, A., & Garba, J. (2022). New Odd Frechet-G Family of Distribution with Statistical Properties and Applications. AFIT Journal of Science and Engineering Research, 2022 2(2): 84-103
Sadiq, I. A., Doguwa, S. I., Yahaya, A., & Garba, J. (2023c). New Generalized Odd Frechet-G (NGOF-G) Family of Distribution with Statistical Properties and Applications. UMYU Scientifica, 2(3), 100-107. http://dx.doi.org/10.56919/usci.2323.016 DOI: https://doi.org/10.56919/usci.2323.016
Shala, M., & Merovci, F. (2024). A New Three-Parameter Inverse Rayleigh Distribution: Simulation and Application to Real Data. Symmetry, 16(5), 634. DOI: https://doi.org/10.3390/sym16050634
Shen, Z., Alrumayh, A., Ahmad, Z., Abu-Shanab, R., Al-Mutairi, M., & Aldallal, R. (2022). A New Generalized Rayleigh Distribution with Analysis of Big Data of an Online Community. Alexandria Engineering Journal, 61(12), 11523-11535. DOI: https://doi.org/10.1016/j.aej.2022.05.010
Thomas W. Keelin (2016) The Meta log Distributions. Decision Analysis 13(4):243-277. http://dx.doi.org/10.1287/deca.2016.0338. DOI: https://doi.org/10.1287/deca.2016.0338
Yahaya, A., & Doguwa, S. I. S. (2021). On Theoretical Study of Rayleigh-Exponentiated Odd Generalized-X Family Of Distributions. Transactions of the Nigerian Association of Mathematical Physics, 14.
Yirsaw, A. G., & Goshu, A. T. (2024). Extended Rayleigh Probability Distribution to Higher Dimensions. Journal of Probability and Statistics, 2024(1), 7677855 DOI: https://doi.org/10.1155/2024/7677855
Copyright (c) 2024 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences