THERMALLY STABLE DYSPROSIUM DOPED ZINC-SODIUM-TELLURITE GLASSES: ABSORPTION AND EMISSION PROPERTIES ENHANCEMENT

  • S. Badamasi
  • Y. A. Tanko
  • Y. A. Yamusa
  • N. N. Garba
  • Musa M. Najamuddeen
Keywords: Tellurite glass, Melt-quenching method, Absorption spectra, Emission spectra and Differential Thermal Analyser

Abstract

Tellurium dioxide among the numerous glass formers have been of interest to researchers due to its promising characteristics. Consequently, absorption and emission are among the most paramount features of glasses applicable in lasers and other optical devices, but there are not much report on absorption and emission properties of Zinc-Sodium-Tellurite Dysprosium doped glasses. Series of dysprosium (Dy3+) ions doped zinc-sodium-tellurite glass having composition (65-x)TeO2-25ZnO-10Na2O-xDy2O3 (0 ≤ x ≤ 2.5 mol%) were prepared using melt-quenching method. Transparent and thermally stable glass samples were characterized via UV-Vis-NIR absorption, photoluminescence (PL), and Fourier transform infrared (FTIR) spectroscopy. Density and molar volume of prepared glass system were found to be in the range of 5.334-5.366 gm-3 and 24.425-25.273 cm3mol-1, respectively. FTIR spectra exhibited various bonding vibrations corresponding to glass network structures and units. UV-Vis-NIR spectra revealed seven absorption peaks centred at 450, 752, 801, 901, 1095, 1281, and 1687 nm which were assigned to the transitions from the ground state to the excited levels such as6H15/2 →4F9/2, 6H15/2 →6F3/2, 6H15/2 →6F5/2, 6H15/2 →6F7/2, 6H15/2 →6H7/2, 6H15/2 →6F11/2, and 6H15/2 →6H11/2 of Dysprosium Dy3+ ions, respectively. Room temperature PL spectra displayed three significant peaks centred at 497, 588, and 675 nm, which were allocated to the transitions from 4F9/2 excited state to the 6H11/2, 6H13/2, and 6H15/2 states, respectively. Present optimized glass composition may be potential for the development of solid state lasers and photonic devices.

References

Abdul Azeem, P., Balaji, S., & Reddy, R. R. (2008). Spectroscopic Properties of Dy3+ in NaF-B2O3-Al2O3 Glasses. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscop, 69, 183-188.

Agarwal, A., Pal, I., Sanghi, S., & Aggarwal, M. P. (2009). Judd-Ofelt Parameters and Radiative Properties of Sm3+ Ions Doped Zinc Bismuth Borate Glasses. Optical Materials, 32(2), 339-344.

Babu, P., Jang, K. H., Kim, E. S., Shi, L., Vijaya, R., Lavin, V., . . . Seo, H. J. (2010). Optical Properties and Energy Transfer of Dy3+-Doped Transparent Oxyfluoride Glasses and Glass-Ceramics. Journal of Non-Crystalline Solids, 356(4), 236-243.

Badamasi, S. (2017). Synthesis and Characterizations of Dysprosium Doped Zinc-Sodium-Tellurite Glass. Universiti Teknologi Malaysia, Department of Physics. Johor Bahru, Johor, Malaysia: Universiti Teknologi Malaysia.

Badamasi, S., & Tanko, Y. A. (2018). Thermal Properties of TeO2-ZnO-Na2O Glasses: Effect of Dy2O3 Doping. Science World Journal, 13(4), 95-99.

Damak, K., El Sayed, Y., Russel, C., & Maalej, R. (2014). White Light Generation from Dy3+ Doped Tellurite Glass. Journal of Quantitative Spectroscopy and Radiative Transfer, 134, 55-63.

El-Mallawany, R. A. (2002). Tellurite Glasses Handbook: Physical Properties and Data. CRC Press.

El-Zaidia, M. M., Ammar, A. A., & El-Mallawany, R. A. (1985). Infra-Red Spectra, Electron Spin Resonance Spectra, and Density of (TeO2)100-x(WO3)x and (TeO2)100-x-(ZnCl2)x Glasses. Physica Status Solidi (a), 91, 637-642.

Gowda, V. V., Reddy, C. N., Radha, K. C., Anavekar, R. V., Etourneau, J., & Rao, K. J. (2007). Structural Investigations of Sodium Diborate Glasses Containing PbO, Bi2O3 and TeO2: Elastic Property Measurements and Spectroscopic Studies. Journal of Non-Crystalline Solids, 353, 1150-1163.

Kesavulu, C. R., & Jayasankar, C. K. (2011). White Light Emission in Dy3+ -Doped Lead Fluorophosphate Glasses. Materials Chemistry and Physics, 130, 1078-1085.

Krishnaiah, K. V., Kumar, K. U., & Jayasankar, C. K. (2013). Spectroscopic Properties of Dy3+ -Doped Oxyfluoride glasses for White Light Emitting Diodes. Materials Express, 3, 61-70.

Kumar, G. A., De La Rosa, E., & Desirena, H. (2006). Radiative and Nonradiative Spectroscopic Properties of Er3+ Ion in Tellurite Glass. Optics Communications, 260(1), 601-606.

Kumar, V. M., Jamalaiah, B. C., Gopal, K. R., & Reddy, R. R. (2012). Optical Absorption and Fluorescence Studies of Dy3+ Doped Lead Telluroborate Glasses. Journal of Luminescences, 132, 86-90.

Lakshminarayana, G., & Buddhudu, S. (2006). Spectral Analysis of Sm3+ and Dy3+:B2O3-ZnO-PbO Glasses. Physica B: Condenesd Matter, 373, 100-106.

Linganna, K., Rao, C. S., & Jayasankar, C. S. (2013). Optical Properties and Generation of White Light in Dy3+ -Doped Lead Phosphate Glasses. Journal of Quantitative Spectroscopy and Radiative Transfer, 118, 40-48.

Madhukar Reddy, C., Dillip, G. R., & Deva Prasad Raju, B. (2011). Spectroscopic and Luminescent of Dy3+ ions in Lead Containing Sodium Fluoroborate Glasses for Laser Materials. Journal of Physics and Chemistry Solids, 72, 1436-1441.

Maheshvaran, K., & Marimuthu, K. (2011). Structural and Optical Investigations on Dy3+ Doped Borotellurite Glasses. Journal of Alloys and Compounds, 509, 7427-7433.

Maheshvaran, K., Arunkumar, S., Sudarsan, V., Natarajan, V., & Marimuthu, K. (2013). Structural and Luminescence Studies on Er3+/Yb3+ Co-doped Boro-Tellurite Glasses. Journal of Alloys and Compounds, 56, 142-152.

Pisarska, J. (2009). Optical Properties of Lead Borate Glasses Containing Dy3+ ions. Journal of Physics Condens Matter, 21, 285101.

Pisarska, J., Pisarska, W. A., & Ryba-Romanowski. (2010). Laser Spectroscopy of Nd3+ and Dy3+ ions in Lead Borate Glasses. Optics & Laser Technology, 42, 805-809.

Pisarski, W. A., Pisarski, J., Lisiecki, R., Dominiak-Dzik, G., & Ryba-Romanowski, W. (2012). Luminescence Quenching of Dy3+ ions in Lead Bismuthate Glasses. Chemical Physics Letters, 531, 114-118.

Praveena, R., R., V., & Jayasankar, C. K. (2008). Photoluminescence and Energy Transfer Studies of Dy3+ -Doped Fluorophosphate Glasses. Spectrochimica Act Part A: Molecular and Biomolecular Spectroscopy, 70, 577-586.

Rada, S., Dehelean, A., & Culea, E. (2011). FTIR and UV-VIS Spectroscopy Investigations on The Structure of the Europium-Lead-Tellurite Glasses. Journal of Non-Crystalline Solids, 357, 3070-3073.

Reddy, M. C., Rao, B. A., Brik, M. G., Reddy, A. P., Rao, P. R., Jayasankar, C. K., & Veeraiah, N. (2012). Emission Properties of Dy3+ ions in Lead Antimony Borate Glasses. Applied Physics B, 108, 455-461.

Saleem, S. A., Jamalaiah, B. C., Jayasimhadri, M., Rao, A. S., Jang, K., & Moorthy, L. R. (2011). Luminescent Studies of Dy3+ ion in Alkali Lead Tellurofluoroborate Glasses. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 78-84.

Sreedhar, V. B., Ramachari, D., & Jayasankar, C. K. (2013). Optical Properties of Zincfluorophosphate Glasses Doped with Dy3+ ions. Physica B: Condensed Matter, 408, 158-163.

Tanko, Y. A., Sahar, M. R., & Ghoshal, S. K. (2016). Samarium Activated Absorption and Emission of Zinc Tellurite Glass. Jurnal Teknologi, 78, 149-152.

Thomas, P. A. (1988). The Crystal Structure and Absolute Optical Chirality of Paratellurite, α-TeO2. Journal of Physics C: Solid State Physics, 21(25), 4611.

Wang, J., Vogel, E., & Snitzer, E. (1994). Tellurite Glass: A New Candidate for Fiber Devices. Optical Materials, 3(3), 187-203.

Yamusa, Y. A., Hussin, R., Shamsuri, W. W., Tanko, Y. A., & Jupri, S. A. (2018). Impact of Eu3+ on The Luminescent, Physical and Optical Properties of BaSO4-B2O3-P2O5 Glasses. Optik, 164, 324-334.

Zarifah, N. A., Halimah, M. K., Hashim, M., Azmi, B. Z., & Daud, W. M. (2010). Magnetic Bahaviour of (Fe2O3)x (TeO2)1-x Glass System Due to Iron Oxide. Chalcogenide Letters, 7, 565-571.

Published
2020-04-14
How to Cite
BadamasiS., TankoY. A., YamusaY. A., GarbaN. N., & Najamuddeen M. M. (2020). THERMALLY STABLE DYSPROSIUM DOPED ZINC-SODIUM-TELLURITE GLASSES: ABSORPTION AND EMISSION PROPERTIES ENHANCEMENT. FUDMA JOURNAL OF SCIENCES, 4(1), 190 - 199. Retrieved from https://fjs.fudutsinma.edu.ng/index.php/fjs/article/view/38

Most read articles by the same author(s)