CONCURRENT PREDICTION OF DIABETES AND HYPERTENSION USING DEEP LEARNING

  • Abubakar Bello Bada Federal University Birnin-Kebbi
  • Ahmad Baita Garko
  • Danlami Gabi
  • Musa S. Argungu
Keywords: Machine Learning, Deep Learning, Diabetes, Hypertension, Transfer Learning

Abstract

Early detection of diabetes and hypertension is essential in preventing severe complications caused by the diseases. This study developed a prediction model using Feed-Forward Deep Neural Network architecture to predict the diseases. A custom dataset generated by combining features from PIMA Indian dataset and PPG-BP dataset is used in training the model. It achieved 93% accuracy in predicting the diseases. Precision and recall scores were also noteworthy, with 95.5% and 94% for concurrent prediction respectively. These results highlight the model’s balanced performance and reliability in real-world healthcare applications. The study addressed limitations in existing single-disease prediction models by focusing on concurrent prediction, which captures the interrelated nature of diabetes and hypertension. Transfer learning played a crucial role in enhancing the model’s performance, taking advantage of pre-training of models to overcome challenges like limited labelled datasets and help in making the concurrent prediction possible by sensitizing the model with features relevant for individual disease. This approach reduced computational overhead and improved generalization, making the model practical for deployment in resource-constrained healthcare settings. Feature selection and engineering, driven by Recursive Feature Elimination (RFE) and domain knowledge, ensured the inclusion of the most relevant attributes, further optimizing the model’s predictive accuracy.

References

Afsaneh, E., Sharifdini, A., Ghazzaghi, H., & Ghobadi, M. (2022). Recent applications of machine learning and deep learning models in the prediction, diagnosis, and management of diabetes: a comprehensive review. Diabetology & Metabolic Syndrome, 14(1). https://doi.org/10.1186/S13098-022-00969-9 DOI: https://doi.org/10.1186/s13098-022-00969-9

Alfian, G., Syafrudin, M., Ijaz, F., Syaekhoni, M. A., Fitriyani, N. L., & Rhee, J. (2018). A personalized healthcare monitoring system for diabetic patients by utilizing BLE-based sensors and real-time data processing. Sensor (Switzerland). DOI: https://doi.org/10.3390/s18072183

Balaji, V., & Sugumar, R. (2022). A Comprehensive Review of Diabetes Mellitus Exposure and Prediction using Deep Learning Techniques. 2022 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI). https://doi.org/10.1109/ICDSAAI55433.2022.10028832 DOI: https://doi.org/10.1109/ICDSAAI55433.2022.10028832

Barath, K. (2021). Introduction to Deep Neural Networks. https://www.datacamp.com/tutorial/introduction-to-deep-neural-networks

Barhun, L., & Sission, B. (2023). Diabetes and hypertension: Connection, complications, risks. https://www.medicalnewstoday.com/articles/317220

Dash, T., Chitlangia, S., Ahuja, A., & Srinivasan, A. (2022). A review of some techniques for inclusion of domain-knowledge into deep neural networks. Scientific Reports 2022 12:1, 12(1), 115. https://doi.org/10.1038/s41598-021-04590-0 DOI: https://doi.org/10.1038/s41598-021-04590-0

DeGuire, J., Clarke, J., Rouleau, K., Roy, J., & Bushnik, T. (2019). Blood pressure and hypertension. Health Reports, 30(2), 1421. https://doi.org/10.25318/82-003-x201900200002

Farahani, A., Voghoei, S., Rasheed, K., & Arabnia, H. R. (2021). A Brief Review of Domain Adaptation. 877894. https://doi.org/10.1007/978-3-030-71704-9_65/COVER DOI: https://doi.org/10.1007/978-3-030-71704-9_65

Ganie, S. M., Kanti, P., Pramanik, D., Malik, M. B., Mallik, S., & Qin, H. (2023). An ensemble learning approach for diabetes prediction using boosting techniques. https://doi.org/10.3389/fgene.2023.1252159 DOI: https://doi.org/10.3389/fgene.2023.1252159

Gopisetti, L. D., Kummera, S. K. L., Pattamsetti, S. R., Kuna, S., Parsi, N., & Kodali, H. P. (2023). Multiple Disease Prediction System using Machine Learning and Streamlit. Proceedings - 5th International Conference on Smart Systems and Inventive Technology, ICSSIT 2023, 923931. https://doi.org/10.1109/ICSSIT55814.2023.10060903 DOI: https://doi.org/10.1109/ICSSIT55814.2023.10060903

Heart Association, A. (2021). What is High Blood Pressure?

Kumar, & Clark. (2021). Clinical Medicine Eighth Edition (8th ed.). Wiley-Blackwell.

Kumari, S., Kumar, D., & Mittal, M. (2021). An ensemble approach for classification and prediction of diabetes mellitus using soft voting classifier. International Journal of Cognitive Computing in Engineering, 2, 4046. https://doi.org/10.1016/J.IJCCE.2021.01.001 DOI: https://doi.org/10.1016/j.ijcce.2021.01.001

Kumar, S., Bhusan, B., Singh, D., & Choubey, D. K. (2020). Classification of Diabetes using Deep Learning. Proceedings of the 2020 IEEE International Conference on Communication and Signal Processing, ICCSP 2020, 651655. https://doi.org/10.1109/ICCSP48568.2020.9182293 DOI: https://doi.org/10.1109/ICCSP48568.2020.9182293

Pan, S. J., & Yang, Q. (2020). A survey on transfer learning. In IEEE Transactions on Knowledge and Data Engineering (Vol. 22, Issue 10, pp. 13451359). https://doi.org/10.1109/TKDE.2009.191 DOI: https://doi.org/10.1109/TKDE.2009.191

Qingnan, S., Jankovic, M. V, Joao, B., Moore, B. L., Diem, P., Stettler, C., & Mougiakakou, S. (2019). Predicting blood glucose with an LSTM and bi-LSTM based deep neural network,. 14th IEEE Symp. Neural Networks Application.

Rushakoff, R. J., Rushakoff, J. A., Kornberg, Z., MacMaster, H. W., & Shah, A. D. (2017). Remote Monitoring and Consultation of Inpatient Populations with Diabetes. In Current Diabetes Reports (Vol. 17, Issue 9). Current Medicine Group LLC 1. https://doi.org/10.1007/s11892-017-0896-x DOI: https://doi.org/10.1007/s11892-017-0896-x

Rushakoff, R. J., Sullivan, M. M., MacMaster, H. W., Shah, A. D., Rajkomar, A., Glidden, D. V., & Kohn, M. A. (2017). Association Between a Virtual Glucose Management Service and Glycemic Control in Hospitalized Adult Patients: An Observational Study. Annals of Internal Medicine, 166(9), 621627. https://doi.org/10.7326/M16-1413 DOI: https://doi.org/10.7326/M16-1413

Sheen, Y. J., Huang, C. C., Huang, S. C., Huang, M. De, Lin, C. H., Lee, I. Te, Lin, S. Y., & Sheu, W. H. H. (2020). Implementation of an electronic dashboard with a remote management system to improve glycemic management among hospitalized adults. Endocrine Practice, 26(2), 179191. https://doi.org/10.4158/EP-2019-0264 DOI: https://doi.org/10.4158/EP-2019-0264

Song, L., Li, J., Yu, S., Cai, Y., He, H., Lun, J., Zheng, L., & Ye, J. (2023). Body Mass Index is Associated with blood pressure and vital capacity in medical students. Lipids in Health and Disease, 22(1), 19. https://doi.org/10.1186/S12944-023-01920-1/TABLES/4 DOI: https://doi.org/10.1186/s12944-023-01920-1

Stephen, B. U. A., Uzoewulu, B. C., Asuquo, P. M., & Ozuomba, S. (2023). Diabetes and hypertension MobileHealth systems: a review of general challenges and advancements. Journal of Engineering and Applied Sciences, 70(1). https://doi.org/10.1186/S44147-023-00240-6 DOI: https://doi.org/10.1186/s44147-023-00240-6

Warr, K. (2020). Deep Neural Network (DNN) Fundamentals. https://learning.oreilly.com/library/view/strengthening-deep-neural/9781492044949/ch03.html#idm46869966445432

Williams, R., & Farrar, H. (2018). Diabetes Mellitus.

Yashvanth, R., Rehan, M., Kodipalli, A., Rohini, B. R., & Rao, T. (2023). Diabetes, Hypertension and Stroke Prediction Using Computational Algorithms. 2023 World Conference on Communication & Computing (WCONF). https://doi.org/10.1109/WCONF58270.2023.10235026 DOI: https://doi.org/10.1109/WCONF58270.2023.10235026

Zhou, B., Rodrigo, C.-L., Danaei, G., Riley, L., Paciorek, C., Stevens, G., Gregg, E., Bennett, J., Solomon, B., Singleton, R., Sophiea, M., Iurilli, M., Lhoste, V., Cowan, M., Savin, S., Woodward, M., Balanova, Y., Cifkova, R., Damasceno, A., Zuiga Cisneros, J. (2021). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet, 398(10304), 957980. https://doi.org/10.1016/s0140-6736(21)01330-1 DOI: https://doi.org/10.1016/S0140-6736(21)01330-1

Zhou, H., Myrzashova, R., & Zheng, R. (2020). Diabetes prediction model based on an enhanced deep neural network. Eurasip Journal on Wireless Communications and Networking, 2020(1). https://doi.org/10.1186/s13638-020-01765-7 DOI: https://doi.org/10.1186/s13638-020-01765-7

Published
2025-03-31
How to Cite
Bada, A. B., Garko, A. B., Gabi, D., & Argungu, M. S. (2025). CONCURRENT PREDICTION OF DIABETES AND HYPERTENSION USING DEEP LEARNING. FUDMA JOURNAL OF SCIENCES, 9(3), 100 -106. https://doi.org/10.33003/fjs-2025-0903-3206