HYPERTENSION PREDICTION USING DEEP LEARNING WITH TRANSFER LEARNING TECHNIQUES
DOI:
https://doi.org/10.33003/fjs-2024-0806-2855Keywords:
Deep Learning, Transfer Learning, Hypertension, Feed-Forward Deep Neural NetworkAbstract
Hypertension or high blood pressure is a chronic condition of consistent rise in blood pressure above the identified normal. It significantly increases the risk of cardiovascular diseases when identified at an advanced stage, but when diagnosed and treated early, it reduces the occurrence of life-threatening complications. This research proposes a prediction model using Deep Learning (DL) with Transfer Learning (TL) techniques for early prediction of hypertension. A pre-trained Feed-Forward Deep Neural Network model, initially developed for diabetes prediction using the PIMA diabetes dataset, is fine-tuned for hypertension prediction using the PPG-BP dataset. This approach utilizes the model's ability to transfer learned knowledge, improving accuracy while reducing computational time. The performance of the model is evaluated using accuracy, precision, and recall. It achieved an accuracy of 81.34%.
References
Aderibigbe, F.M. and Apanapudor, J.S.(2014a): Computing Techniques for the Conjugate Search Directions of the Extended Conjugate Gradient Method Algorithm for Optimal Control Problems, IOSR Journal of Mathematics, Vol. 10(3) version IV pp.23 - 33
Apanapudor, J.S. and Aderibigbe, F.M(2015): On the Justification of the ECGM algorithm for Optimal Control Problems, Quest Journal of Research in applied Mathematics, Vol.2, Issue 5, pp.7 - 13
Apanapudor, J.S., Aderibigbe, F.M.and Okwonu, F.Z.(2020): An Optimal Penalty Constant for Discrete Optimal Control Regulator Problems, Journal of Physics: Conference Series 1529 042073
Aderibigbe, F.M. and Apanapudor,J.S.(2014b): On the Extended Conjugate Gradient Methods (ECGM) algorithm for Discrete Optimal Control Problems and some of its features, IOSR Journal of Mathematics (IOSR-JM) Vol.10(3) (version IV) pp.16 - 22
Apanapudor, J.S. Umukoro, J.,Okwonu, F.Z. and Okposo, N.(2023): Optimal Solution Techniques for Control Problem of Evolution Equations, Science World Journal, Vol.18(3),Published by Faculty of Science , Kaduna State University, https://dx.doi.org/10.4314/swj.v1813.27
Apanapudor, J.S. Akporido, D.K.,and Okwonu, F.Z. (2023): On the Generalized minimum cost flow problem: An Application in Natural Gas Distribution Networks, FUW Trends in Science and Technology Journal ,Vol. 8(3) pp. 176 – 181
Bazaraa, M. S., Jarvis, J. J., & Sherali, H. D. (2013). Linear programming and network flow. John Wiley & Sons.
Coello Coello, C. A., Pulido, G. T., & Lechuga, M. S. (2004). Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8(3), 256–279. https://doi.org/10.1109/TEVC.2004.826067
Dantzig, G. B., & Thapa, M. N. (2003). Linear programming: 1. Introduction. Springer Science & Business Media.
Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. John Wiley & Sons.
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197. https://doi.org/10.1109/4235.996017
Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197. https://doi.org/10.1109/4235.996017
Dorigo, M., & Stützle, T. (2004). Ant Colony Optimization. MIT Press. https://doi.org/10.7551/mitpress/1290.001.0001
Fonseca, C. M., & Fleming, P. J. (1995). Multiobjective genetic algorithms and the Pareto set. International Journal of Systems Science, 26(6), 527–534.
Gendreau, M., & Potvin, J. Y. (2010). Handbook of metaheuristics. Springer Science & Business Media. https://doi.org/10.1007/978-1-4419-1665-5
Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison-Wesley.
Holland, J. H. (2005). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. The University of Michigan Press.
Hooke, R., & Jeeves, T. A. (2001). Direct search solution for numerical and statistical problems. [JACM]. Journal of the Association for Computing Machinery, 8(2), 212–229. https://doi.org/10.1145/321062.321069
Iweobodo,D.C., Njoseh, I.N. and Apanapudor, J.S.(2024):An Overview of Iweobodo-Mamadu-Njoseh Wavelet and its Steps in Solving Time Fractional Advection -Diffusion Problems, Asian Research Journal of Mathematics, Vol. 20(3), pp.59 - 67
Izevbizua O. and Apanapudor JS (2019) Total revenue function for non-regular fixed lifetime inventory system. African Journal of Mathematics and Computer Science Research 12 (2), 24-30 https://scholar.google.com/citations?view_op=view_citation&hl=en&user=m5qJ9AoAAAAJ&citation_for_view=m5qJ9AoAAAAJ:roLk4NBRz8UC
Izevbizua, O. and Apanapudor, J.S.(2019)Implementing fries model for the fixed lifetime Inventory system, OPSEARCH, https://doi.org/10.1007/s12597-019-00403-1
Kalyanmoy, D. (2006). Multi-objective optimization using evolutionary algorithms: An introduction. John Wiley & Sons.
Laumanns, M., Thiele, L., Deb, K., & Zitzler, E. (2002). Combining convergence and diversity in evolutionary multiobjective optimization. Evolutionary Computation, 10(3), 263–282. https://doi.org/10.1162/106365602760234108
Lawler, E. L. (2001). Combinatorial optimization: networks and matroids. Courier Corporation.
Michalewicz, Z. (2006). Genetic algorithms + data structures = evolution programs. Springer Science & Business Media. https://doi.org/10.1007/978-3-662-03315-9
Nemhauser, G. L., & Wolsey, L. A. (2008). Integer and combinatorial optimization. John Wiley & Sons. https://doi.org/10.1002/9781118627372
Nocedal, J., & Wright, S. J. (2006). Numerical optimization. Springer Science & Business Media.
Okposo, N.I., Addai, E., Apanapudor, J.S., and Gomez-Aguilar, J.F.(2023): A Study of Monkey-pox transmission model within the scope of fractal-fractional derivative with power-law kernel, The European Physical Journal Plus, https://doi.org/epjp/s13360-023-04334-1
Okwonu,F.Z.,Ahad, N.A.,Apanapudor,J.S.,and Arunaye, F.I.(2021):Robust Multivariate Correlation Techniques: A Confirmation Analysis using COVID-19 Data Set, Pertanika Journal of Science and Technology, Vol. 29(2), pp.999 – 1015
Okwonu, F.Z. Ahad, N.A., Okoloko,I. E., Apanapudor, J.S.,and Arunaye, F.I. (2022): Robust Hybrid Classification Methods and Applications, Pertanika Journal of Science and Technology,Vol. 10(4), pp. 2831 - 2850.
Okwonu, F. Z. Ahad, N.A., Apanapudor, J.S. and Arunaye, F.I.(2023): Chi-square and Adjusted Standardised Residual Analysis,ASM Sc.Journal Vol. 18, https://doi.org/10.32802/asmscj.2023.985
Ravindran, A., Phillips, D. T., & Solberg, J. J. (2013). Operations research: principles and practice. John Wiley & Sons.
Sivanandam, S., Sumathi, S., & Deepa, T. (2008). Introduction to Genetic Algorithms. Springer.
Shi, Y., & Eberhart, R. C. (2008). A modified particle swarm optimizer. In Proceedings of the IEEE International Conference on Evolution
Voss, S. (2010). Evolutionary algorithms: The key to solving complex optimization problems. Applied Soft Computing, 10(2), 1–10.
Wang, G. G. (2013). A hybrid evolutionary algorithm for complex engineering optimization problems. Engineering Optimization, 45(3), 291–309.
Zhang, Y., Liu, X., & Ma, L. (2021). Blockchain in supply chain management: A literature review and future research directions. Journal of Business Logistics, 42(1), 14–26
Zhou, Z., Li, X., & Jiang, J. (2021). The role of blockchain technology in the fight against COVID-19: A review. International Journal of Information Management, 44, 74–79.
Zitzler, E., Laumanns, M., & Thiele, L. (2011). SPEA2: Improving the strength Pareto evolutionary algorithm. TIK-Report, (103).
Published
How to Cite
Issue
Section
FUDMA Journal of Sciences