FRACTIONAL MATHEMATICAL MODEL FOR THE TRANSMISSION DYNAMICS AND CONTROL OF HEPATITIS C
Abstract
This study investigates various epidemiological aspects of Hepatitis C infection by employing a fractional-order mathematical model to evaluate the impact of treatment on the transmission dynamics of the disease. The research identifies conditions for the existence and uniqueness of the solution in the fractional-order case and conducts a stability analysis of the endemic equilibrium using the Lyapunov function method. Numerical simulations, performed using the fractional Adams–Bashforth–Moulton technique, demonstrate the effects of model parameters and fractional-order values on the control and spread of Hepatitis C. Further simulations with surface and contour plots reveal that higher contact rates and reduced treatment effectiveness lead to an increased prevalence of Hepatitis C. The study also concludes that optimizing treatment strategies can significantly decrease the disease's prevalence in the population.
References
Abdulhamid A, N. Hussaini, Effects of quarantine on transmission dynamics of lassa fever,BayeroJ.PureAppl.Sci.11(2018)397–407. DOI: https://doi.org/10.4314/bajopas.v11i1.64S
Acheneje, G.O.,Omale,D., Agbata,B.C., Atokolo,W., Shior,M.M., Bolarinwa,B(2024) Approximate Solution of the Fractional Order Mathematical Model on the Transmission Dynamics on The Co-Infection of COVID-19 and Monkeypox Using the Laplace-Adomian Decomposition Method, International Journal of Mathematics and Statistics Studies, 12(3),17-51 DOI: https://doi.org/10.37745/ijmss.13/vol12n31751
Ahmed I., . Goufo E. F. D,Yusuf A., Kumam .P., Chaipanya P., and Nonlaopon K. ( 2021), “An epidemic prediction from analysis of a combined HIV-COVID-19 co-infection model via ABC fractional operator,” Alexandria Engineering Journal, vol. 60, no. 3, pp. 2979–2995. DOI: https://doi.org/10.1016/j.aej.2021.01.041
Atokolo W a, RemigiusAja .O. ,Omale .D., Ahman .Q. O.,Acheneje G. O., Amos . J. (2024) Fractional mathematical model for the transmission dynamics and control of Lassa fever Journal of journal homepage: www.elsevier. 2773-1863/© 2024com/locate/fraopehttps:// doi.org/10.1016/j.fraope.2024.100110. DOI: https://doi.org/10.1016/j.fraope.2024.100110
Atokolo W a, RemigiusAja .O. ,Omale .D., Paul .R. V.,Amos . J.,Ocha S. O., (2023) Mathematical modeling of the spread of vector borne diseases with influence of vertical transmission and preventive strategies FUDMA Journal of sciences: Vol. 7 No. 6, December (Special Issue), pp 75 -91 DOI: https://doi.org/10.33003/fjs-2023-0706-2174
Atokolo, W., Aja, R. O., Aniaku, S. E., Onah, I. S., &Mbah, G. C. (2022).Approximate solution of the fractional order sterile insect technology model via the Laplace– Adomian Decomposition Method for the spread of Zika virus disease.International Journal of Mathematics and Mathematical Sciences, 2022(1), 2297630. DOI: https://doi.org/10.1155/2022/2297630
Baskonus. H.M.,Bulut H., (2015) On the numerical solutions of some fractional ordinary differential equations by fractional Adams Bashforth-Moulton Method, Open Math. 13 1. DOI: https://doi.org/10.1515/math-2015-0052
Bolarinwa.B, M.M., , (2024) Approximate Solution of the Fractional Order
Bonyah. E., Zarin, R. Fatmawati, Mathematical modeling of Cancer and Hepatitis co-dynamics with non-local and nonsingular kernal, 2020, 2052–2541.https://doi.org/10.28919/ cmbn/5029.
Brawer, F., & Castillo – Chavez, C.(2021). MathematicalModels in Populaiton Biology and Epidemiology. (Vol. 44,Pp: xxiv + 416). New York; Springer.
Chen, S.B. Rajaee F., Yousefpour A., Alcaraz . R. Y., Chu . J.F. Gómez-Aguilar, S. Bekiros, A. Aly,Jahanshahi H.,(2020) Antiretroviral therapy of HIV infection using a novel optimal type-2 fuzzy control strategy, AEJ - Alexandria Eng. J. 60 http://dx.doi.org/10.1016/j.aej.2020.11.009 . DOI: https://doi.org/10.1016/j.aej.2020.11.009
Chen, Y., Wong, K., & Zhao, L. (2023), Modeling the Impact of Vaccination Strategies on Hepatitis C and COVID-19 Coinfection Dynamics, journal of vaccine, vol, 41(15), pages, 2897-2905.
Chikaki, E., Ishikawa, H (2009). A Dengue TransmissionModel in Thailand considering sequential infections with allfour serotypes. J. Infect. Dev. Ctries. 3(9), 711 – 722. DOI: https://doi.org/10.3855/jidc.616
Das, R., Patel, S., & Kumar, A.( 2024), Mathematical Modeling of Hepatitis C and COVID-19 Coinfection in Low- and Middle-Income Countries: Challenges and Opportunities, Journal of BMC Public Health, vol, 24(1), pages, 587.
Diethelm .K., (1999) The Frac PECE subroutine for the numerical solution of differential equations of fractional order,.
DOI: https://doi.org/10.33003/fjs-2023-0706-2174 . DOI: https://doi.org/10.33003/fjs-2023-0706-2174
Elkaranshawy H. A., Ezzat H. M., and Ibrahim. N. N.,( 2020 )“Dynamical analysis of a multiscale model of hepatitis C virus infection using a transformed ODEs model,”in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 2451–2454, Montreal, QC, Canada,. DOI: https://doi.org/10.1109/EMBC44109.2020.9176525
Garcia, L., Patel, R., & Nguyen, T ,( 2022) Dynamic Modeling of Coinfection Transmission: Insights from Hepatitis C and COVID-19, journal of Mathematical Biosciences, vol, 289, pages 112-125.
Liu B. S. Farid, S. Ullah, M. Altanji, R. Nawaz, S.W. Teklu, Mathematical Assessment of Monkeypox disease with the impact of vaccination using a fractional epidemiological modeling approach, Sci. Rep. (2023) http://dx.doi. org/10.1038/541598-023-40745. DOI: https://doi.org/10.1038/s41598-023-40745-x
Mathematical Model on the Transmission Dynamics on The Co-Infection of
Milici C., G. Draganescu, J.T. Machado, Introduction to Fractional Differential Equations, Springer, 2018. DOI: https://doi.org/10.1007/978-3-030-00895-6
Nigeria Centre for Disease Control HandBook, Nigeria Centre for Disease Control (NCDC), Viewed February 18 2019 from http://www.ncdc.gov.ng.
Ogabi C.O. ,Olusa T.V.,. Madufor M.A, Controlling lassa fever transmission in Northern part of Edo state Nigeria using SIS model, N. Y. Sci. J. 5 (12) (2012) 190–197.
Ojo M. M.,Goufo. E.F.D. (2022) , Modeling, analyzing and simulating the dynamics of Lassa fever in Nigeria, J Egypt Math Soc 30 (1) http://dx.doi.org/10.1186/s42787-022-00138-x. DOI: https://doi.org/10.1186/s42787-022-00138-x
Omame,A. M. Abbas, and C. P. Onyenegecha, (2022 ). “A fractional order model for the co-interaction of COVID-19 and hepatitis B virus,” DOI: https://doi.org/10.1016/j.rinp.2022.105498
Omede B. I, Israel .M.,Mustapha .M. K. , Amos J. ,Atokolo .W. , and Oguntolu .F. A. (2024) Approximate solution to the fractional soil transmitted Helminth infection model using Laplace Adomian Decomposition Method.Journal of mathematics. (2024) Int. J. Mathematics. 07(04), 16-40.
Podlubny .I., (1998) Fractional differential equations, an introduction to fractional derivatives, in: Fractional Differential Equations, to Methods of their Solutions and Some of their Applications, Elsevier,.
Richmond .J.K., Baglole .D.J.,(2003) Lassa fever: epidemiology, clinical features and social consequences, BMJ 327 1271–1275. DOI: https://doi.org/10.1136/bmj.327.7426.1271
Smith, J., Johnson, A. B., & Lee, C.( 2023) Modeling the Coinfection Dynamics of Hepatitis C and COVID-19: A Systematic Review" journal of Epidemiology and Infection, vol, 151(7), pages , 1350-1365.
Ullah. A.Z. T. Abdeljawad, Z. Hammouch, K. Shah, A hybrid method for solving fuzzy Volterra integral equations of separable type kernels, J. King Saud Univ. - Sci. 33 (2020) http://dx.doi.org/10.1016/j.jksus.2020.101246. DOI: https://doi.org/10.1016/j.jksus.2020.101246
VandenDriessche .Watmough P., J.,(2002) , Reproduction numbers and Sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (1–2) 29–48. DOI: https://doi.org/10.1016/S0025-5564(02)00108-6
Wang, X., Kim, S., & Gupta, M. (2024) Modeling of Hepatitis C and COVID-19 Coinfection Hotspots: A Geospatial Analysis Journal of Geospatial Health, vol, 16(2), pages, 87-99.
Wong, T., Patel, M., & Lee, E.(2024) Mathematical Modeling of Coinfection Transmission in the Context of Vaccination Strategies: Hepatitis C and COVID-19, Journal of Theoretical Biology, vol, 512, pages, 110367
Yunus A.O, M.O. Olayiwola, M.A. Omolaye, A.O. Oladapo, A fractional order model of lassa fever disease using the Laplace-Adomian decomposition method, Health Care Anal. 3 (2023) 100167, www.elsevier.com/locate/health.Health care Analytics. DOI: https://doi.org/10.1016/j.health.2023.100167
Yunus, A. O., Olayiwola, M. O., Adedokun, K. A., Adedeji, J. A., &Alaje, I. A. (2022). Mathematical analysis of fractional-order Caputo’s derivative of coronavirus disease model via Laplace Adomian decomposition method.Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 144. DOI: https://doi.org/10.1186/s43088-022-00326-9
Z. Ali, A. Zada, K. Shah, Existence and stability analysis of three point boundary value problem, Int. J. Appl. Comput. Math.3 (2017) 651–664, http://dx.doi. org/10.1007/s40819-017-0375-8. DOI: https://doi.org/10.1007/s40819-017-0375-8
Zhang .R.F., M.-C.Li, J.Y. Gan, Q. Li, Z.-Z.Lan, (2022). Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method, Chaos Solitons Fractals 154 (C) . Results in Physics, vol. 37, article 105498. DOI: https://doi.org/10.1016/j.chaos.2021.111692
Copyright (c) 2024 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences