MATHEMATICAL MODELING OF THE SPREAD OF VECTOR BORNE DISEASES WITH INFLUENCE OF VERTICAL TRANSMISSION AND PREVENTIVE STRATEGIES

• William Atokolo
• Remigius Okeke Aja
• David Omale
• Rose Veronica Paul
• Jeremiah Amos
• Shedrach Onu Ocha
Keywords: Vector-borne, vertical, prevention, transmission, spread, strategies

Abstract

This work is aimed at formulating a mathematical model of the spread of vector-borne diseases with influence of vertical transmission and preventive strategies. Vector borne diseases are caused by viruses, bacteria, and parasites typically conveyed by mosquitoes. Certain illnesses transmitted by vectors include West Nile Virus, Malaria, Zika virus, Dengue fever, Rift valley fever, and Viral encephalitis induced by pathogens like bacteria, viruses, and parasites. The positive solutions of the model are presented and the theory of basic reproduction number  was used to study the model dynamical behaviour. When reduces; the diseases are wiped out of the population with time and vice versa. The disease free and endemic equilibria states of the model were determined and investigated to be locally and globally stable.We incorporated the use of Insecticide –Treated Nets (ITN), Indoor Residual Sprayings (IRS) and condom usage as preventive measures in the presence of treatment. Numerical simulations show that complete intervention measures, that is, the use of ITN, IRS and condom usage while placing the infected on treatment have valuable impact on the spread of vector-borne diseases.

References

Abdullah, A., Jun, W (2018). New Mathematical Model of Vertical Transmission and cure of vector borne diseases and its numerical simulation. Advances in difference equations., 2018:66 https://doi-org/10.1186/s13662-018-1516-z. DOI: https://doi.org/10.1186/s13662-018-1516-z

Andraud, M., Hens, N., Marals, C., Beutels, P. (2012). Dynamic epidemiological models for dengue transmission; a systematic review of structure approaches. Plus one 7(11), 49085. DOI: https://doi.org/10.1371/journal.pone.0049085

Atkinson, B., Hearn, P., Afrough, B., Lumley, S., Carter, D., Arons, E.J., Simpson, A.J.(2016). Brooks, T.J., Hewson, R; Detection of Zika Virus in Semen. Emerg. Infect. Dis. 22(5), 940 DOI: https://doi.org/10.3201/eid2205.160107

Atokolo, W. Aja, R. O.Aniaku, S.E., Onah, I.S., &Mbah, G.C.E (2022). Approximate Solution of the Fractional order ‘sterile insect technology model via the Laplace – Adomian Decomposition Method for the Spread of Zika Virus Disease. International Journal of Mathematics and Mathematical Sciences. Volume 2022, Article ID 2297630, 2022. DOI: https://doi.org/10.1155/2022/2297630

Atokolo, W., &Mbah, G.C.E (2020). Modeling the control of zika virus vector population using the sterile insect technology. Journal of applied mathematics. DOI: https://doi.org/10.1155/2020/6350134

Brawer, F., & Castillo – Chavez, C.(2021). Mathematical Models in Populaiton Biology and Epidemiology. (Vol. 44, Pp: xxiv + 416). New York; Springer.

Caraballo, H (2014). Emergency Department Management of Mosquito – Borne illness, malaria, Dengue and West Nile Virus. Emergency Medicine Practice. 16(5), 1 – 23.

Chikaki, E., Ishikawa, H (2009). A Dengue Transmission Model in Thailand considering sequential infections with all four serotypes. J. Infect. Dev. Ctries. 3(9), 711 – 722. DOI: https://doi.org/10.3855/jidc.616

Chowell, G., Diaz – Duenas, P., Miller, J.C., Alcazar – Velazco, A., Hyman, J.M., Fenimore, P.W., & Castillo – Chavez, C (2007). Estimation of the reproduction number of dengue fever from spatial epidemic data. Mathematical biosciences, 207, 571 – 589. DOI: https://doi.org/10.1016/j.mbs.2006.11.011

Danbaba, U.A. &Garba, S.M (2018). Analysis of Model for the Transmission Dynamics of Zika with Sterile Insect Technique. Texts in Biomathematics, Vol. 1, 81 – 99. DOI: https://doi.org/10.11145/texts.2018.01.083

Dasti, J.I (2016).Zika Virus Infections; An overview of current Scenario. Asian Pac. J. Trop. Med. 9 (7). 621 – 625. DOI: https://doi.org/10.1016/j.apjtm.2016.05.010

Diekmann, O., Heesterbeek, J.A.P., Metz, J.A.J (1990) On the Definition and the Computation of the Basic Reproduction Number Ro in Models for Infections Diseases in Heterogeneous Populations. J. Math. Biol. 28, 365. DOI: https://doi.org/10.1007/BF00178324

Driessche, P.V.D., Watmough, J (2002). Reproduction Number and Sub-Threshold Endemic Equilibria for Compartmental Models of Disease Transmission. Math. Biosciences 180, 29 – 48. DOI: https://doi.org/10.1016/S0025-5564(02)00108-6

Foy, B.D., Kobylinski, K.C., Foy, J.L., Blitvich, B.J., Da Rosa, A.T., Haddow, A.D., Lanciotti, R.S., Tesh, R.B (2011). Probable non-vector borne transmission of zika virus. Emerg. Infect. Dis. 17(5), 880 – 882. DOI: https://doi.org/10.3201/eid1705.101939

Gao, D., Lou, Y., He, D., Porco, T.C., Kuang, Y., Chowell, G., Ruan, S (2016). Prevention and Control of Zika as a mosquito – borne and sexually transmitted disease: A mathematically modelling analysis. Sci. Rep. 6. 28070. DOI: https://doi.org/10.1038/srep28070

Hills, S.L. (2016). Transmission of Zika Virus through Sexual Contact with Travellers to Areas of Ongoing Transmission – Continental United States, 2016. Morb. Mort.Wkly, Rep. 65. 215 – 216 . DOI: https://doi.org/10.15585/mmwr.mm6508e2

Lasalle, J.P (1976). The Stability of Dynamical systems. SIAM, Philadelphia. DOI: https://doi.org/10.21236/ADA031020

Lashari, A.A., Zaman, G (2011). Global Dynamics of Vector – Borne Disease with Horizontal Transmission in Lust Population Comput. Math. Appl. 61, 745 – 754. DOI: https://doi.org/10.1016/j.camwa.2010.12.018

Mosquito – Borne Diseases – American Mosquito Control Association. www.mosquito.org. Retrieved 2018 – 02 – 15.

Mosquito Control; can it stop Zika at source? World Health Organization (WHO, 2016). http://www. who.int/emergencies/ zika-virus/articles/mosquito-control/en/.

Musso, D., Roche, C., Robin, E., Nhan, T.,Teissier, A., Cao-Lormeau, V.M (2015). Potential Sexual Transmission of Zika Virus. Emerg. Infect. Dis. 21(2), 359 – 361. DOI: https://doi.org/10.3201/eid2102.141363

Iornem T.V, Abdulkadir, S .S., Akinrefon, A. A., Ornguga I . G (2023). Modelling of Access to Mosquito Treated Net in Nigeria: Using Multilevel Logistic Regression Approach. FUDMA Journal of Sciences (FJS), https://doi.org/10.33003/fjs-2023-0703-1831, Vol.7, No. 3, 2023. Pp 144-149. DOI: https://doi.org/10.33003/fjs-2023-0703-1831

Padmanabhan, P., Seshaiyer, P., & Castillo-Chavez, C.(2017). Mathematical Modeling Analysis and Simulation of the Spread of Zika with Influence of Sexual Transmission and Preventive Measures. Letters in Biomathematics. Vol 4, No 1, 148 – 166. DOI: https://doi.org/10.1080/23737867.2017.1319746

Rao, V.S.H.(2009). Dynamic models and control of biological systems. Springer. Dordrecht. DOI: https://doi.org/10.1007/978-1-4419-0359-4

WHO, (2015). Dengue and Severe Dengue, Fact Sheet n117, updated May 2015. http://www.who. int/mediacentre/factsheets/fs117/en.

Yakob, L., & Clements, A.C.A (2015) A Mathematical model of chikungunya dynamics and control. The major epidemic on Russian Island. Plus one, 8, e57448 DOI: https://doi.org/10.1371/journal.pone.0057448

Published
2024-01-30
How to Cite
Atokolo W., Aja R. O., Omale D., PaulR. V., Amos J., & Ocha S. O. (2024). MATHEMATICAL MODELING OF THE SPREAD OF VECTOR BORNE DISEASES WITH INFLUENCE OF VERTICAL TRANSMISSION AND PREVENTIVE STRATEGIES. FUDMA JOURNAL OF SCIENCES, 7(6), 75 - 91. https://doi.org/10.33003/fjs-2023-0706-2174
Section
Research Articles