SYNERGISTIC IMPACT OF RICE HUSK ASH AND PULVERIZED CLAY BRICK BLENDS ON CEMENT MORTAR DURABILITY IN MAGNESIUM SULPHATE ENVIRONMENTS

  • Mukhtar Isma'il Ahmadu Bello University Zaria
  • A. Lawan
  • I. Aliyu
Keywords: Cation binding capacity, Rice Husk Ash, Pulverized Clay Brick, Magnesium Sulphate

References

Abiodun, Y. O., & Jimoh, A. A. (2018). Microstructural characterisation, physical and chemical properties of rice husk ash as viable Pozzolan in building material: A case study of some Nigerian grown rice varieties. Nigerian Journal of Technology, 37(1), 71. https://doi.org/10.4314/njt.v37i1.10 DOI: https://doi.org/10.4314/njt.v37i1.10

Adhikary, S. K., Ashish, D. K., & Rudžionis, Ž. (2022). A review on sustainable use of agricultural straw and husk biomass ashes: Transitioning towards low carbon economy. Science of The Total Environment, 838, 156407. https://doi.org/10.1016/j.scitotenv.2022.156407 DOI: https://doi.org/10.1016/j.scitotenv.2022.156407

Aliyu, I., Tasiu, A. S., Muhammad, A., & Ismail, M. (2020). Effect of Magnesium Sulphate on Calcined Clay Brick Powder Cement Replaced Mortar. JOURNAL OF SCIENCE TECHNOLOGY AND EDUCATION 8(2), JUNE, 2020, 8(2), 131.

Assumptor, O. M., Masika, E., & Thiong’o, K. (n.d.). Probing Optimal Blends of Pozzolans to Develop Supplementary Cementing Material Within Busia County, Kenya.

ASTM C-168-19 (2019). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. West Conshohocken, PA: American Society for Testing and Materials (ASTM) International. Retrieved from www.astm.org.

ASTM C 1012-04 (2004). Standard test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution. West Conshohocken, PA: American Society for Testing and Materials (ASTM) International.

ASTM D7503 – 10. (July 1, 2010). Standard Test Method for Measuring the Exchange Complex and Cation Exchange Capacity (CEC) of Inorganic Fine-Grained Soils.

BS 882, Part 2, (1992). Grading limits for fine aggregates, British Standard Institution, London.

BS EN 196, Part 3, (1995). Methods of testing cement: Determination of setting time and soundness. British Standard Institution, London.

Charitha, V., Athira, V. S., Jittin, V., Bahurudeen, A., & Nanthagopalan, P. (2021). Use of different agro-waste ashes in concrete for effective upcycling of locally available resources. Construction and Building Materials, 285, 122851. https://doi.org/10.1016/j.conbuildmat.2021.122851 DOI: https://doi.org/10.1016/j.conbuildmat.2021.122851

Dabai, M., Muhammad, C., Bagudo, B., & Musa, A. (2010). Studies on the Effect of Rice Husk Ash as Cement Admixture. Nigerian Journal of Basic and Applied Sciences, 17(2), 252–256. https://doi.org/10.4314/njbas.v17i2.49917 DOI: https://doi.org/10.4314/njbas.v17i2.49917

Dawood, A. O., Mussa, F. I., Khazraji, H. A., Ulsada, H. A. A., & Yasser, M. M. (2021). Investigation of Compressive Strength of Straw Reinforced Unfired Clay Bricks For Sustainable Building Construction. Civil and Environmental Engineering, 17(1), 150–163. https://doi.org/10.2478/cee-2021-0016 DOI: https://doi.org/10.2478/cee-2021-0016

Endale, S. A., Taffese, W. Z., Vo, D.-H., & Yehualaw, M. D. (2022). Rice Husk Ash in Concrete. Sustainability, 15(1), 137. https://doi.org/10.3390/su15010137 DOI: https://doi.org/10.3390/su15010137

Gill, A. S., & Siddique, R. (2017). Strength and micro-structural properties of self-compacting concrete containing metakaolin and rice husk ash. Construction and Building Materials, 157, 51–64. https://doi.org/10.1016/j.conbuildmat.2017.09.088 DOI: https://doi.org/10.1016/j.conbuildmat.2017.09.088

Hasan, N. Md. S., Sobuz, Md. H. R., Khan, Md. M. H., Mim, N. J., Meraz, Md. M., Datta, S. D., Rana, Md. J., Saha, A., Akid, A. S. M., Mehedi, Md. T., Houda, M., & Sutan, N. M. (2022). Integration of Rice Husk Ash as Supplementary Cementitious Material in the Production of Sustainable High-Strength Concrete. Materials, 15(22), 8171. https://doi.org/10.3390/ma15228171 DOI: https://doi.org/10.3390/ma15228171

Hindarso, H., Epriliati, I., Hoerudin, D., & Yuliani, S. (2021). Synthesis and Characterization of Biosilica from Rice Husks as a Catalyst for the Production of Biodiesel. Fine Chemical Engineering, 41–46. https://doi.org/10.37256/fce.222021735 DOI: https://doi.org/10.37256/fce.222021735

Jhatial, A. A., Nováková, I., & Gjerløw, E. (2023). A Review on Emerging Cementitious Materials, Reactivity Evaluation and Treatment Methods. Buildings, 13(2), 526. https://doi.org/10.3390/buildings13020526 DOI: https://doi.org/10.3390/buildings13020526

Kaptan, K., Cunha, S., & Aguiar, J. (2024). A Review: Construction and Demolition Waste as a Novel Source for CO2 Reduction in Portland Cement Production for Concrete. Sustainability, 16(2), 585. https://doi.org/10.3390/su16020585 DOI: https://doi.org/10.3390/su16020585

Li, X., Yu, X., Zhao, Y., Yu, X., Li, C., & Chen, D. (2022). Effect of initial curing period on the behavior of mortar under sulfate attack. Construction and Building Materials, 326, 126852. https://doi.org/10.1016/j.conbuildmat.2022.126852 DOI: https://doi.org/10.1016/j.conbuildmat.2022.126852

Marangu, J. M., Muturia M’thiruaine, C., & Bediako, M. (2020). Physicochemical Properties of Hydrated Portland Cement Blended with Rice Husk Ash. Journal of Chemistry, 2020, 1–10. https://doi.org/10.1155/2020/5304745 DOI: https://doi.org/10.1155/2020/5304745

Mousavi, S. S., Bhojaraju, C., & Ouellet-Plamondon, C. (2021). Clay as a Sustainable Binder for Concrete—A Review. Construction Materials, 1(3), 134–168. https://doi.org/10.3390/constrmater1030010 DOI: https://doi.org/10.3390/constrmater1030010

Msinjili, N. S., Vogler, N., Sturm, P., Neubert, M., Schröder, H.-J., Kühne, H.-C., Hünger, K.-J., & Gluth, G. J. G. (2021). Calcined brick clays and mixed clays as supplementary cementitious materials: Effects on the performance of blended cement mortars. Construction and Building Materials, 266, 120990. https://doi.org/10.1016/j.conbuildmat.2020.120990 DOI: https://doi.org/10.1016/j.conbuildmat.2020.120990

Müllauer, W., Beddoe, R. E., & Heinz, D. (2013). Sulfate attack expansion mechanisms. Cement and Concrete Research, 52, 208–215. https://doi.org/10.1016/j.cemconres.2013.07.005 DOI: https://doi.org/10.1016/j.cemconres.2013.07.005

Neville, A. (2004). The confused world of sulfate attack on concrete. Cement and Concrete Research, 34(8), 1275–1296. https://doi.org/10.1016/j.cemconres.2004.04.004 DOI: https://doi.org/10.1016/j.cemconres.2004.04.004

Santhanam, M., Cohen, M. D., & Olek, J. (2003). Mechanism of sulfate attack: A fresh look. Cement and Concrete Research, 33(3), 341–346. https://doi.org/10.1016/S0008-8846(02)00958-4 DOI: https://doi.org/10.1016/S0008-8846(02)00958-4

Sulaiman, T. A., & Aliyu, I. (2020). Combined Effect of Rice Husk Ash and Cement Kiln Dust as Cement Replacement Materials in Concrete. Fudma Journal of Sciences, 4(1), 446 - 452. Retrieved from https://fjs.fudutsinma.edu.ng/index.php/fjs/article/view/66

Sungkono, K. (2018). Characteristics Of Clay Tile With Rice Husk Ash On Absorption And Flexural Strength. Proceedings of the The 1st International Conference on Computer Science and Engineering Technology Universitas Muria Kudus. The 1st International Conference on Computer Science and Engineering Technology Universitas Muria Kudus, Kudus, Indonesia. https://doi.org/10.4108/eai.24-10-2018.2280589 DOI: https://doi.org/10.4108/eai.24-10-2018.2280589

Published
2024-09-19
How to Cite
Isma’ilM., LawanA., & AliyuI. (2024). SYNERGISTIC IMPACT OF RICE HUSK ASH AND PULVERIZED CLAY BRICK BLENDS ON CEMENT MORTAR DURABILITY IN MAGNESIUM SULPHATE ENVIRONMENTS. FUDMA JOURNAL OF SCIENCES, 8(5), 124 - 133. https://doi.org/10.33003/fjs-2024-0805-2705