DURABILITY CHARACTERISTICS OF MICROBIAL INDUCED CALCITE PRECIPITATE/CEMENT STABILIZED LATERITE BLOCKS

  • S. Abdullahi
  • Bilkisu Hassan Sada Amartey Dr
  • J. M. Kaura
  • Y. D. Amartey
Keywords: Bacillus coagulans, Bio-calcination, Cement, Compressive strength, Laterite blocks

Abstract

This study investigates the strength and durability characteristics of molded laterite blocks stabilized with microbial-induced calcite precipitate (MICP) bacteria namely Bacillus coagulans (B.coagulans) and cement. The properties checked includes the water absorption and wet compressive strength of the laterite blocks tested at different curing ages of 7-, 14-, 21-, and 28 days by examining the impact of B.coagulans calcite precipitate, cement, and the combined effects of both on these properties. The B.coagulans bacteria having a 3g/l nutrient broth content served as the bio-calcination agent, while ordinary Portland cement acted as the stabilizer, The B. coagulans concentrations were varied at 0, 1.5E+08, 6.0E+08, 1.2E+09, 1.8E+09 and 2.4E+09 cell/ml suspension densities using the McFarland standards. From results obtained the water absorption properties shows improvement, decreasing from 32% for un-stabilized soil to optimal values of 15%, 9%, and 6% for MICP-stabilized, cement-stabilized, and MICP 5% cement-stabilized laterite blocks, respectively, at 28 days of curing. The wet compressive strength of un-stabilized soil ranges from 0.5 to 1.0 N/mm2 for curing periods 7 to 28 days respectively which is lower than for the stabilized laterite blocks which were 1.99 N/mm2 for 1.80E09 cell/ml B.coagulans suspension density and 3.7 N/mm2 for 5% cement stabilized laterite blocks at 2.4E09 cell/ml B. coagulans suspension density after 28 days curing.  Results obtained showed that the stabilized laterite blocks outperform the unstabilized blocks and therefore the cement-MICP combination used gave positive outcomes in stabilization of laterite blocks with a minimal percentage of 5% cement-stabilized MICP for sustainable building applications.

References

Abdul Wahab N.; Roshan, M.J.; Rashid, A. S. A.; Hezmi, M.A.; Jusoh, S.N.; Norsyahariati, N.D. and Tamassoki, S. (2021), “Strength and Durability of Cement-Treated Lateritic Soil,” Sustainability, vol. 13, doi: 10.3390/su13116430. DOI: https://doi.org/10.3390/su13116430

Awolusi, T.; Oguntayo, D.; Babalola, O.; Oke, O. and Akinkurolere, O. (2021), “Investigation of micronized laterite sandcrete block compressive strength,” Case Stud. Constr. Mater., vol. 14, p. e00530, doi:10.1016/j.cscm.2021.e00530. DOI: https://doi.org/10.1016/j.cscm.2021.e00530

Bang, S.S., Lippert, J.J., Yerra, U., Mulukutla, S. and Ramakrishnan, V. (2010), “Microbial calcite, a bio-based smart nanomaterialin concrete remediation “ International Journal of smart and Nano materials. Vol 1, No 1, pp 28-39. DOI: https://doi.org/10.1080/19475411003593451

Chambua, S.T.; Jande, Y.A. C. and Machunda, R.L. (2021), “Strength and Durability Properties of Concrete Containing Pumice and Scoria as Supplementary Cementitious Material,” Adv. Mater. Sci. Eng., vol. 2021, p. 5578870, doi: 10.1155/2021/5578870. DOI: https://doi.org/10.1155/2021/5578870

Ewa, D.; Ukpata, J.; Egbe, E.; and Akeke, E. (2022), “Physical Properties of Sandcrete-Laterite Blocks,” Int. J. Mech. Civ. Eng., vol. 5, pp. 1–9, Feb. 2022, doi: 10.52589/IJMCE-3U4HBY35. DOI: https://doi.org/10.52589/IJMCE-3U4HBY35

Fall M.; Sarr, D.; Cissé, E. and Konaté, D., (2021), “Physico-Mechanical Characterization of Clay and Laterite Bricks Stabilized or Not with Cement,” Open J. Civ. Eng., vol. 11, pp. 60–69, doi: 10.4236/ojce.2021.111004. DOI: https://doi.org/10.4236/ojce.2021.111004

Fall, T., Saracho, A.C. and Haigh, S.T. (2023), “Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review” Biogeotechnics, vol 1, issue 1, 100002. DOI: https://doi.org/10.1016/j.bgtech.2023.100002

Indian Standard “Compressive strength test of bricks (IS 3495 PART I: 1992). Accessed from https://crazyforcivilengineering.blogspot.com/2017/03/compressive-strength-test-of-bricks-is.html (on Oct. 26, 2023).

Montaño Salazar, S.; Lizarazo Marriaga, J.; and Brandão, P. (2018), “Isolation and Potential Biocementation of Calcite Precipitation Inducing Bacteria from Colombian Buildings,” Curr. Microbiol., vol. 75, doi: 10.1007/s00284-017-1373-0. DOI: https://doi.org/10.1007/s00284-017-1373-0

Obianyo, I.I.; Mahamat, A.A.; Anosike-Francis, E.N.; Stanislas, T.T.; Geng, Y. and Onyelewo, K.C. (2021), “Performance of lateritic soil stabilized with combination of bone and palm bunch ash for sustainable building applications,” Cogent Eng., vol. 8, doi: 10.1080/23311916.2021.1921673. DOI: https://doi.org/10.1080/23311916.2021.1921673

Olopade, O.; Oladimimu, A.; Bolorunduro, K. and Adetukasi, A. (2022), “Comparative Strength Analysis of Laterite as Partial Replacement of Sand in Hollow Blocks and Interlocking Bricks Production,” vol. 6, p. 37.

Ramakrishnan, V., Panchalan, R.K., Bang, S.S. and City, R. (2005) “Improvement of concrete durability by bacterial mineral precipitation” Proceedings of the International Conference on Fracture, 11, pp 357-367.

Rowshanbakht,K.; Khamehchiyan, M.; Sajedi, R. and Nikudel, M. (2016), “Effect of injected bacterial suspension volume and relative density on carbonate precipitation resulting from microbial treatment,” Ecol. Eng., vol. 89, pp. 49–55, doi: 10.1016/j.ecoleng.2016.01.010. DOI: https://doi.org/10.1016/j.ecoleng.2016.01.010

Sitton J.; Zeinali, Y.; Heidarian, W. and Story, B. (2018), “Effect of mix design on compressed earth block strength,” Constr. Build. Mater. vol. 158, pp. 124–131, doi: 10.1016/j.conbuildmat.2017.10.005. DOI: https://doi.org/10.1016/j.conbuildmat.2017.10.005

Standards organization of Nigeria, (2004), “Nigerian industrial standard: standards for sandcrete blocks.” Lagos, Nigeria, 2004.

Stocks-Fischer, S.; Galinat, J.K. and Bang, S.S. (1999), “Microbiological precipitation of CaCO3,” Soil Biol. Biochem., vol. 31, no. 11, pp. 1563–1571, doi: https://doi.org/10.1016/S0038-0717(99)00082-6. DOI: https://doi.org/10.1016/S0038-0717(99)00082-6

Suhendro, B. (2014), “Toward Green Concrete for Better Sustainable Environment,” Procedia Eng., vol. 95, pp. 305–320, doi: https://doi.org/10.1016/j.proeng.2014.12.190. DOI: https://doi.org/10.1016/j.proeng.2014.12.190

The Guardian Nigeria (2023), “On building materials,” The Guardian Nigeria News - Nigeria and World News, Jul. 31, 2016. https://guardian.ng/opinion/on-building-materials/ (accessed Oct. 26, 2023).

Tiboti, P.; Niyomukiza, J.B.; Kiwanuka, M.; Mbujje, J.; Baiga, J. and Hadudu, A., (2021), “Optimizing laterite cement blocks in the construction of masonry using quarry dust,” IOP Conf. Ser. Earth Environ. Sci., vol. 802, p. 012056, doi: 10.1088/1755-1315/802/1/012056. DOI: https://doi.org/10.1088/1755-1315/802/1/012056

Zhao, Q.; Li, L.; Li, C.; Li, M.; Amini, F. and Zhang, H. (2014), “Factors Affecting Improvement of Engineering Properties of MICP-Treated Soil Catalyzed by Bacteria and Urease,” J. Mater. Civ. Eng., vol. 26, p. 04014094, doi: 10.1061/(ASCE)MT.1943-5533.0001013. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001013

Published
2024-06-30
How to Cite
AbdullahiS., AmarteyB. H. S., KauraJ. M., & Amartey Y. D. (2024). DURABILITY CHARACTERISTICS OF MICROBIAL INDUCED CALCITE PRECIPITATE/CEMENT STABILIZED LATERITE BLOCKS. FUDMA JOURNAL OF SCIENCES, 8(3), 301 - 308. https://doi.org/10.33003/fjs-2024-0803-2550