PANEL REGRESSION INVESTIGATION ON THE IMPACT OF SERVICE EXPORT AND AGRICULTURAL RAW MATERIALS ON ECONOMIC GROWTH IN 5 SUB-SAHARAN COUNTRIES
DOI:
https://doi.org/10.33003/fjs-2024-0803-2525Keywords:
Service export, Agricultural raw material, Fixed Effect, Random Effect, Panel Data, Sub-Saharan AfricaAbstract
Population expansion, rising incomes, and increasing urbanization characterize Sub-Saharan Africa's economies, indicating potential market development but also posing trade stability problems. Poor economic performance and dependency on oil exports in the region have necessitated additional research and talks. This study will look into the impact of service exports and agricultural raw materials on the economic growth of five Sub-Saharan African countries between 2012 and 2022. The study will examine the impact of service exports (sexp) and agricultural raw materials (aexp) on GDP using several regression models, to determine the most appropriate model using the Hausman test. The research seeks to establish the relationship between service exports, agricultural raw material exports, and economic growth in these countries, chosen based on their GDP performance as of 2023. The study used three different estimators to ensure robust results. The Hausman test revealed that the fixed effects model is most suitable for addressing challenges related to independent variables with a positive but negligible impact on GDP. Overall, the research found that while service exports have a positive impact, it is statistically insignificant for GDP. The findings are also applicable to agricultural raw materials. The consistent and large value shows that an increase in service exports and agricultural raw materials will increase the selected Sub-Saharan African countries' GDP. According to the findings, authorities in these countries should develop policies to establish conditions that promote the productive and advantageous roles of agricultural raw materials and service exports in driving economic expansion across Sub-Saharan Africa.
References
Abdussalam, A. F. (2020). Climate Change and Health Vulnerability in Informal Urban Settlements of Kaduna Metropolis. Science World Journal, 15(3), 127–132. https://doi.org/10.47514/swj/15.03.2020.020
Ajibade, L. T., & Okwori, A. (2009). Developing an Information System for Rural Water Supply Scheme in Kaduna State. Journal of Environmental Science, 1(1), 1–8.
Akpu, B., Tanko, A. I., Jeb, D., & Dogo, B. (2017). Geospatial Analysis of Urban Expansion and Its Impact on Vegetation Cover in Kaduna Metropolis, Nigeria. Asian Journal of Environment & Ecology, 3(2), 1–11. https://doi.org/10.9734/ajee/2017/31149
Asfaw, A., Simane, B., Hassen, A., & Bantider, A. (2018). Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather and Climate Extremes, 19, 29–41. https://doi.org/10.1016/J.WACE.2017.12.002
Ayanlade, A. (2016). Variation in diurnal and seasonal urban land surface temperature: landuse change impacts assessment over Lagos metropolitan city. Modeling Earth Systems and Environment 2016 2:4, 2(4), 1–8. https://doi.org/10.1007/S40808-016-0238-Z
Baba, B. M., Abubakar, M. L., Raji, R. B., & Ibrahim, R. (2020). Spatial Distribution of Electric Transformers in Narayi Ward, Chikun Local Government Area of Kaduna State, Nigeria. Kaduna Journal of Geography, 2(2), 114–130. https://www.researchgate.net/publication/346018027_Spatial_Distribution_of_Electric_Transformers_in_Narayi_Ward_Chikun_Local_Government_Area_of_Kaduna_State_Nigeria
Baba, E. B., Maiyaki, D. J., & Musa, I. (2020). Analysis of Urban Land Use Encroachment on River Kaduna Floodplain, Kaduna Metropolis , Kaduna. International Journal of Science and Advanced Innovative Research, 5(1), 62–79.
Baffour-Ata, F., Antwi-Agyei, P., Nkiaka, E., Dougill, A. J., Anning, A. K., & Kwakye, S. O. (2021). Effect of climate variability on yields of selected staple food crops in northern Ghana. Journal of Agriculture and Food Research, 6, 100205. https://doi.org/10.1016/J.JAFR.2021.100205
Bekele, D., Alamirew, T., Kebede, A., Zeleke, G., & Melese, A. M. (2017). Analysis of rainfall trend and variability for agricultural water management in Awash River Basin, Ethiopia. Journal of Water and Climate Change, 8(1), 127–141. https://doi.org/10.2166/WCC.2016.044
Bennett, J. G., Rains, A. B., Gosden, P. N., Howard, W. J., Hutcheon, A. A., Kerr, W. B., Mansfield, J. E., Rackham, L. J., & Wood, A. W. (1979). Land Resources of central Nigeria; agricultural development possibilities. Volume 3A. The Jema’a Platform Executive Summary. In I. D. Hill (Ed.), Agricultural development possibilities: The Jema’a Platform (Vol. 3B). Land Resources Development Centre.
Bera, B., Shit, P. K., Saha, S., & Bhattacharjee, S. (2021). Exploratory analysis of cooling effect of urban wetlands on Kolkata metropolitan city region, eastern India. Current Research in Environmental Sustainability, 3, 100066. https://doi.org/10.1016/J.CRSUST.2021.100066
Broadbent, A. M., Coutts, A. M., Tapper, N. J., Demuzere, M., & Beringer, J. (2017). The microscale cooling effects of water sensitive urban design and irrigation in a suburban environment. Theoretical and Applied Climatology 2017 134:1, 134(1), 1–23. https://doi.org/10.1007/S00704-017-2241-3
Chi, Y., Sun, J., Sun, Y., Liu, S., & Fu, Z. (2020). Multi-temporal characterization of land surface temperature and its relationships with normalized difference vegetation index and soil moisture content in the Yellow River Delta, China. Global Ecology and Conservation, 23, e01092. https://doi.org/10.1016/J.GECCO.2020.E01092
Choudhury, D., Das, K., & Das, A. (2019). Assessment of land use land cover changes and its impact on variations of land surface temperature in Asansol-Durgapur Development Region. The Egyptian Journal of Remote Sensing and Space Science, 22(2), 203–218. https://doi.org/10.1016/J.EJRS.2018.05.004
Coutts, A. M., Tapper, N. J., Beringer, J., Loughnan, M., & Demuzere, M. (2013). Watering our cities: The capacity for Water Sensitive Urban Design to support urban cooling and improve human thermal comfort in the Australian context. Progress in Physical Geography, 37(1), 2–28. https://doi.org/10.1177/0309133312461032
Das, D. N., Chakraborti, S., Saha, G., Banerjee, A., & Singh, D. (2020). Analysing the dynamic relationship of land surface temperature and landuse pattern: A city level analysis of two climatic regions in India. City and Environment Interactions, 8, 100046. https://doi.org/10.1016/j.cacint.2020.100046
Didan, K., Munoz, A. B., Solano, R., & Huete, A. (2015). MODIS Vegetation Index User’s Guide (MOD13 Series) Version 3.0 Ccollection 6) (Vol. 2015, Issue May, p. 38). Vegetation Index and Phenology Lab, The University of Arizona.
Frimpong, B. F., Koranteng, A., & Molkenthin, F. (2022). Analysis of temperature variability utilising Mann–Kendall and Sen’s slope estimator tests in the Accra and Kumasi Metropolises in Ghana. Environmental Systems Research, 11(1), 1–13. https://doi.org/10.1186/s40068-022-00269-1
GRID3 - Nigeria. (2022). Geo-Referenced Infrastructure and Demographic Data for Development. National Space Research and Development Agency. https://grid3.gov.ng/dataset/kaduna-operational-ward-boundaries/resources
Hadria, R., Benabdelouahab, T., Mahyou, H., Balaghi, R., Bydekerke, L., El Hairech, T., & Ceccato, P. (2018). Relationships between the three components of air temperature and remotely sensed land surface temperature of agricultural areas in Morocco. International Journal of Remote Sensing, 39(2), 356–373. https://doi.org/10.1080/01431161.2017.1385108
Hamed, K. H. (2008). Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. Journal of Hydrology, 349(3–4), 350–363. https://doi.org/10.1016/J.JHYDROL.2007.11.009
Harka, A. E., Jilo, N. B., & Behulu, F. (2021). Spatial-temporal rainfall trend and variability assessment in the Upper Wabe Shebelle River Basin, Ethiopia: Application of innovative trend analysis method. Journal of Hydrology: Regional Studies, 37, 100915. https://doi.org/10.1016/J.EJRH.2021.100915
Kafy, A. Al, Dey, N. N., Al Rakib, A., Rahaman, Z. A., Nasher, N. M. R., & Bhatt, A. (2021). Modeling the relationship between land use/land cover and land surface temperature in Dhaka, Bangladesh using CA-ANN algorithm. Environmental Challenges, 4, 100190. https://doi.org/10.1016/J.ENVC.2021.100190
Kendall, M. G. (1975). Rank Correlation Methods. (4th Editio). Charles Griffin.
Koko, A. F., Yue, W., Abubakar, G. A., Alabsi, A. A. N., & Hamed, R. (2021). Spatiotemporal influence of land use/land cover change dynamics on surface urban heat island: A case study of abuja metropolis, nigeria. ISPRS International Journal of Geo-Information, 10(5). https://doi.org/10.3390/ijgi10050272
Kovats, R. S., & Hajat, S. (2008). Heat stress and public health: A critical review. Annual Review of Public Health, 29, 41–55. https://doi.org/10.1146/annurev.publhealth.29.020907.090843
Liu, W., Guo, Z., Jiang, B., Lu, F., Wang, H., Wang, D., Zhang, M., & Cui, L. (2020). Improving wetland ecosystem health in China. Ecological Indicators, 113(February), 106184. https://doi.org/10.1016/j.ecolind.2020.106184
Mann, H. B. (1945). Nonparametric Tests Against Trend. Econometrica, 13(3), 245. https://doi.org/10.2307/1907187
Nse, O. U., Okolie, C. J., & Nse, V. O. (2020). Dynamics of land cover, land surface temperature and NDVI in Uyo City, Nigeria. Scientific African, 10, e00599. https://doi.org/10.1016/j.sciaf.2020.e00599
Oke, T. R., Mills, G., Christen, A., & Voogt, J. A. (2017). Urban Climates. Cambridge University Press. https://doi.org/10.1017/9781139016476
Omonijo, A. G. (2014). Rainfall Amount and Number of Raindays in Kaduna, Northern Nigeria – Implication on Crop Production. International Conference on Agricultural, Ecological and Medical Sciences, Omotosho 1985, 6–12. https://doi.org/10.15242/iicbe.c714048
Pataki, D. E., Carreiro, M. M., Cherrier, J., Grulke, N. E., Jennings, V., Pincetl, S., Pouyat, R. V., Whitlow, T. H., & Zipperer, W. C. (2011). Coupling biogeochemical cycles in urban environments: Ecosystem services, green solutions, and misconceptions. Frontiers in Ecology and the Environment, 9(1), 27–36. https://doi.org/10.1890/090220
Rakib, A. Al, Akter, K. S., Rahman, N., Arpi, S., & Al Kafy, A. (2020). Analyzing the Pattern of Land Use Land Cover Change and its Impact on Land Surface Temperature: A Remote Sensing Approach in Mymensingh, Bangladesh. 1st International Student Research Conference -2020 Dhaka University Research Society (DURS), University of Dhaka, Bangladesh Analyzing, 1–11.
Richards, D. R., & Belcher, R. N. (2019). Global Changes in Urban Vegetation Cover. Remote Sensing, 12(1), 23. https://doi.org/10.3390/rs12010023
Rousta, I., Sarif, M. O., Gupta, R. D., Olafsson, H., Ranagalage, M., Murayama, Y., Zhang, H., & Mushore, T. D. (2018). Spatiotemporal analysis of land use/land cover and its effects on surface urban heat Island using landsat data: A case study of Metropolitan City Tehran (1988-2018). Sustainability (Switzerland), 10(12). https://doi.org/10.3390/su10124433
Sa’adi, Z., Yaseen, Z. M., Farooque, A. A., Mohamad, N. A., Muhammad, M. K. I., & Iqbal, Z. (2023). Long-term trend analysis of extreme climate in Sarawak tropical peatland under the influence of climate change. Weather and Climate Extremes, 40, 100554. https://doi.org/10.1016/J.WACE.2023.100554
Saleh, Y., Badr, A. M., Banna, F. El, & Shahata, A. (2014). Agricultural Land-Use Change and Disappearance of Farmlands in Kaduna Metropolis-Nigeria. Science World Journal, 9(1), 1–7. http://www.scienceworldjournal.org/article/view/13586
Shigute, M., Alamirew, T., Abebe, A., Ndehedehe, C. E., & Kassahun, H. T. (2023). Analysis of rainfall and temperature variability for agricultural water management in the upper Genale river basin, Ethiopia. Scientific African, 20, e01635. https://doi.org/10.1016/J.SCIAF.2023.E01635
Tini, N. H., & Light, B. J. (2020). Impacts of Urban Sprawl on Livability in Kaduna Metropolis, Nigeria. International Journal of Scientific Research in Science and Technology, 7(6), 334–343. https://doi.org/10.32628/ijsrst207644
Ullah, W., Ahmad, K., Ullah, S., Ahmad, A., Faisal, M., Nazir, A., Mehmood, A., Aziz, M., & Mohamed, A. (2023). Analysis of the relationship among land surface temperature (LST), land use land cover (LULC), and normalized difference vegetation index (NDVI) with topographic elements in the lower Himalayan region. Heliyon, 9(2), e13322. https://doi.org/10.1016/j.heliyon.2023.e13322
Umar, D. A., Ramli, M. F., Aris, A. Z., Jamil, N. R., & Aderemi, A. A. (2019). Evidence of climate variability from rainfall and temperature fluctuations in semi-arid region of the tropics. Atmospheric Research, 224(February), 52–64. https://doi.org/10.1016/j.atmosres.2019.03.023
Urqueta, H., Jódar, J., Herrera, C., Wilke, H. G., Medina, A., Urrutia, J., Custodio, E., & Rodríguez, J. (2018). Land surface temperature as an indicator of the unsaturated zone thickness: A remote sensing approach in the Atacama Desert. Science of the Total Environment, 612, 1234–1248. https://doi.org/10.1016/j.scitotenv.2017.08.305
Wan, Z. (2007). MODIS Land Surface Temperature Products Users’ Guide. In LPDAAC (Vol. 8, Issue 3, pp. 169–175). ICESS, University of California.
Wang, Y., Berardi, U., & Akbari, H. (2016). Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy and Buildings, 114, 2–19. https://doi.org/10.1016/j.enbuild.2015.06.046
Xu, S. (2009). An approach to analyzing the intensity of the daytime surface urban heat island effect at a local scale. Environmental Monitoring and Assessment, 151(1–4), 289–300. https://doi.org/10.1007/s10661-008-0270-1
Xueru, Z., Xiao, J., & Yue, Q. (2018). Ecological land cold island effect evaluation based on land surface temperature retrieval. 2018 7th International Conference on Agro-Geoinformatics, Agro-Geoinformatics 2018. https://doi.org/10.1109/AGRO-GEOINFORMATICS.2018.8476105
Zaharaddeen, I., Baba, I. I., & Ayuba, Z. (2016). Estimation of Land Surface Temperature of Kaduna Metropolis, Nigeria Using Landsat Imageries. Journal of Chemical and Pharmaceutical Sciences, 11(3), 36–42.
Zhang, X., Pang, J., & Li, L. (2015). Estimation of Land Surface Temperature under Cloudy Skies Using Combined Diurnal Solar Radiation and Surface Temperature Evolution. Remote Sensing 2015, Vol. 7, Pages 905-921, 7(1), 905–921. https://doi.org/10.3390/RS70100905
Zhang, Y., Yan, J., Cheng, X., & He, X. (2021). Wetland Changes and Their Relation to Climate Change in the Pumqu Basin, Tibetan Plateau. International Journal of Environmental Research and Public Health 2021, Vol. 18, Page 2682, 18(5), 2682. https://doi.org/10.3390/IJERPH18052682
Zhou, W., Wang, J., & Cadenasso, M. L. (2017). Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sensing of Environment, 195, 1–12. https://doi.org/https://doi.org/10.1016/j.rse.2017.03.043
Published
How to Cite
Issue
Section
FUDMA Journal of Sciences