MODELLING NIGERIAN STOCK RETURNS WITH ARMA-EGARCH: A VOLATILITY ANALYSIS
Abstract
This study analyzes the volatility of Nigerian stock returns from January 2, 2010, to December 31, 2022, using ARMA-EGARCH models with Generalized Error Distribution (GED). Four model specifications are assessed: ARMA-EGARCH (1,1), ARMA-EGARCH (1,2), ARMA-EGARCH (2,1), and ARMA-EGARCH (2,2). The focus is on model selection, parameter estimation, and diagnostic testing to determine the best model for capturing volatility dynamics. The ARMA-EGARCH (2,2) GED model emerges as the best based on AIC, BIC, and high log-likelihood values, offering a good balance of fit and complexity. The ARMA-EGARCH (1,1) GED model is noted for effectively balancing simplicity and fit while capturing volatility and asymmetric effects. However, all models show limitations in fully capturing volatility dynamics and maintaining parameter stability, particularly concerning volatility clustering. The ARMA-EGARCH (2,2) model consistently performs best across various statistical criteria, including AIC and BIC. Although it provides a robust fit, it has some limitations in serial correlation and model stability. This indicates the need for further model refinement and exploration to enhance forecasting accuracy and address intrinsic limitations. These findings are valuable for investors and policymakers in understanding stock market volatility modelling both in Nigeria and globally.
References
Abdullahi, A. B., & Bakari, H. R. (2014). The effects of COVID-19 outbreak on the Nigerian Stock Exchange performance: Evidence from GARCH models. The International Journal of Engineering and Science (IJES), 2319-1813, ISSN (p): 2319-1805.
Adenomon, M., Maijamaa, B., & John, D. O. (2020). The effects of COVID-19 outbreak on the Nigerian Stock Exchange performance: Evidence from GARCH models. Journal of Statistical Modeling and Analytics, 4(2), 25-38.
Adenomon, M., Maijamaa, B., & John, D. O. (2022). The effects of COVID-19 outbreak on the Nigerian Stock Exchange performance: Evidence from GARCH models. Journal of Statistical Modeling & Analytics (JOSMA), 4(1). https://doi.org/10.22452/josma.vol4no1.3 DOI: https://doi.org/10.22452/josma.vol4no1.3
Adewale, A., & Okunola, I. (2024). Combining ARMA with EGARCH models for improved forecasting accuracy of Nigerian stock returns. Journal of Emerging Market Studies, 15(1), 78-92. https://doi.org/10.1016/j.jems.2024.101456
Akaike, H. (1974). A new look at the identification of statistical models. IEEE Transactions on Automatic Control, 19(6), 716-723. https://doi.org/10.1109/TAC.1974.1100705 DOI: https://doi.org/10.1109/TAC.1974.1100705
Ariyo, D., Ajayi, K., & Omotosho, B. (2023). Asymmetric effects in financial volatility: Evidence from the EGARCH model. Journal of Financial Econometrics, 12(3), 205-223. https://doi.org/10.1093/jfe/feac016
Bollerslev, T. (1986). Generalised autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307-327. https://doi.org/10.1016/0304-4076(86)90063-1 DOI: https://doi.org/10.1016/0304-4076(86)90063-1
Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis: Forecasting and control (Revised edition). Holden-Day.
Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (2015). Time series analysis: Forecasting and control (5th ed.). Wiley.
Brockwell, P. J., & Davis, R. A. (2016). Introduction to time series and forecasting (3rd ed.). Springer. DOI: https://doi.org/10.1007/978-3-319-29854-2
Chen, J., Zhang, Q., Luo, R., & Yang, Y. (2023). Evaluating the effectiveness of the EGARCH model in capturing volatility dynamics. International Review of Financial Analysis, 84, 189-202. https://doi.org/10.1016/j.irfa.2023.101823
Emenogu, N., Adenomon, M. O., & Nweze, N. O. (2020). Financial innovation. Financial Innovation, 6, 18. https://doi.org/10.1186/s40854-020-00178
Emenogu, N. G., Adenomon, M. O., & Nweze, N. O. (2020). On the volatility of daily stock returns of Total Nigeria Plc: Evidence from GARCH models, value-at-risk and backtesting. Journal of Financial Innovation, 6, 18. https://doi.org/10.1186/s40854-020-00178-1 DOI: https://doi.org/10.1186/s40854-020-00178-1
Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50(4), 987-1007. https://doi.org/10.2307/1912773 DOI: https://doi.org/10.2307/1912773
Engle, R. F. (2001). GARCH 101: The use of ARCH/GARCH models in applied econometrics. Journal of Economic Perspectives, 15(4), 157-168. https://doi.org/10.1257/jep.15.4.157 DOI: https://doi.org/10.1257/jep.15.4.157
Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. Journal of Finance, 25(2), 383-417. https://doi.org/10.1111/j.1540-6261.1970.tb00518.x DOI: https://doi.org/10.1111/j.1540-6261.1970.tb00518.x
Feng, L., Zhang, J., & Zhou, L. (2022). Forecasting stock returns for investment strategies: A comprehensive review. Journal of Financial Research, 45(3), 456-478. https://doi.org/10.1016/j.jfinres.2022.01.005
Hamilton, J. D. (1994). Time series analysis. Princeton University Press. DOI: https://doi.org/10.1515/9780691218632
Hannan, E. J. (1980). The determination of the order of an autoregressive process. Journal of the Royal Statistical Society: Series B (Methodological), 42(2), 224-238. https://doi.org/10.1111/j.2517-6161.1980.tb01116.x DOI: https://doi.org/10.1111/j.2517-6161.1980.tb01116.x
Khan, S., & Malik, A. (2023). The effectiveness of EGARCH models in capturing asymmetric volatility effects in emerging markets. International Journal of Financial Studies, 11(2), 234-250. https://doi.org/10.3390/ijfs11020012
Malkiel, B. G., & Fama, E. F. (2022). Efficient market hypothesis: A review and update. Financial Analysts Journal, 78(3), 5-24. https://doi.org/10.1080/0015198X.2022.2054620
Jatau, M., Chiawa, M. A., & Kuhe, D. A. (2018). Modeling stock returns volatility in Nigeria: Applications of GARCH family models. Asian Journal of Economics, Business and Accounting, 9(1), 1-12. https://doi.org/10.9734/AJEBA/2018/39861 DOI: https://doi.org/10.9734/AJEBA/2018/39861
Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59(2), 347-370. https://doi.org/10.2307/2938260 DOI: https://doi.org/10.2307/2938260
Nsengiyumva, E., Mungatu, J. K., Kayijuka, I., & Ruranga, C. (2024). Neural networks and ARMA-GARCH models for foreign exchange risk measurement & assessment. Journal of Cogent Economics & Finance, 12. https://doi.org/10.1080/23322039.2024.2423258 DOI: https://doi.org/10.1080/23322039.2024.2423258
Prez, R., Garca, J., & Martinez, M. (2022). Application of ARMA models in forecasting stock returns: Evidence and recommendations. Quantitative Finance Review, 9(4), 322-340. https://doi.org/10.1080/14697688.2022.2054321
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-464. https://doi.org/10.1214/aos/1176344136 DOI: https://doi.org/10.1214/aos/1176344136
Timmermann, A. (2020). The ARMA model and its application in forecasting stock returns. Journal of Economic Dynamics and Control, 115, 103-120. https://doi.org/10.1016/j.jedc.2020.103019
Zhang, Q., Luo, R., Yang, Y., & Liu, Y. (2018). Benchmarking deep sequential models on volatility predictions for financial time series. 32nd Conference on Neural Information Processing Systems (NIPS 2018), Montreal, Canada. arXiv:1811.03711.
Zhang, Y., Liu, X., & Zhou, W. (2023). Combining ARMA and EGARCH models for improved forecasting of financial returns and volatility. Quantitative Finance, 23(1), 89-105. https://doi.org/10.1080/14697688.2023.2037342
Copyright (c) 2025 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences