EFFECTS OF WATER, KOH, HCl AND IONIC STRENGTH ON SWELLING CAPACITY OF CARBOXYMETHYL CELLULOSE (CMC) BASED GRAFT COPOLYMER HYDROGEL

  • S. Yahaya
  • S. A. Zauro
  • U. Ibrahim
  • A. M. Tolani
  • I. Y. Shinkafi Federal University Ditsin-ma Katsina
  • Y. Albashir
Keywords: Hydrogel, initiator, crosslinker, swelling ratio

Abstract

Hydrogels are three-dimensional crosslinked polymers with several uses in the administration and loading of drugs as well as the capacity to hold enormous amounts of water or biological fluids. Using carboxymethyl cellulose, N,N-dimethyl acrylamide (DMA), 2-acrylamido-2-methyl-1-propane sulphonic acid (AMPS), N,N-bisacrylamide (MBA) as a crosslinker, and potassium persulate (KPS) as an initiator, the CMC-g-poly(DMA-co-AMPS) was created. FTIR spectroscopy was used to characterize the CMC-g-poly(DMA-co-AMPS). In distilled water, KOH, and HCl, the CMC-g-poly(DMA-co-AMPS)'s swelling capability was assessed. CMC-g-poly(DMA-co-AMPS has the largest swelling ratio in KOH, followed by HCl, while pure water has the lowest swelling ratio. Various salt solutions (FeCl3.6H2O, CuCl2, and NaCl) were used at predetermined times in distilled water to test the effect of ionic strength on CMC-g-poly(DMA-co-AMPS). The swelling of CMC-g-poly(DMA-co-AMPS) increased with the increase in salt solution concentration, and the ionic strength of a solution is the measure of the concentration of ions in salt solutions. In salt solutions (CuCl2, NaCl, and FeCl3.6H2O), the maximal swelling ratio of CMC-g-poly(DMA-co-AMPS) is 10.5g, 10.0g, and 9.5g, respectively.

References

Abd El-salam D. N. M. (2004). Synthesis and characterization of superabsorbent hydrogels based on natural polymers using ionizing radiations. (Master Thesis). Al-Azhar University, Cairo, Egypt.

Atta, S., Khaliq, S., Islam, A., Javeria, I., Jamil, T., Athar, M. M., Shafiq, M. I. and Ghaffar, A. (2015). Injectable biopolymerbased hydrogels for drug delivery applications. International Journal of Biological Macromolecules,80: 240-245 DOI: https://doi.org/10.1016/j.ijbiomac.2015.06.044

Bajpai, A.; Giri, A. (2003), Water sorption behaviour of highly swelling (carboxy methylcellulose-g-polyacrylamide) hydrogels and release of potassium nitrate as agrochemical. Carbohydr. Polym., 53, 271–279. DOI: https://doi.org/10.1016/S0144-8617(03)00071-7

Dahou, W., Ghemati, D., Oudia, A. and Aliouche, D. (2010). Biochemistry. England Journal 48: 187. DOI: https://doi.org/10.1016/j.bej.2009.10.006

Dragan, E.S. Design and applications of interpenetrating polymer network hydrogels. A review. Chem. Eng. J.2014, 243, 572–590. DOI: https://doi.org/10.1016/j.cej.2014.01.065

Griffith, L. G., (2000). Polymeric biomaterials. Acta Mater 48: 263-277. DOI: https://doi.org/10.1016/S1359-6454(99)00299-2

Jamingan, Z., Ahmad, M. B., Hashim, K., and Zainuddin, N. (2015). Sago starch-based hydrogel prepared using electron beam irradiation technique for controlled release application. Malaysian Journal of Analytical Sciences 19(3): 503–512.

Ji, H.; Song, X.; Shi, Z.; Tang, C.; Xiong, L.; Zhao, W.; Zhao, C. (2018) Reinforced-Concrete Structured Hydrogel Microspheres with Ultrahigh Mechanical Strength, Restricted Water Uptake, and Superior Adsorption Capacity. ACS Sustain. Chem. Eng., 6, 5950–5958. DOI: https://doi.org/10.1021/acssuschemeng.7b04323

Klemm, D., Heublein, B., Fink, H. P., and Bohn, A. (2005). Cellulose: Fascinating biopolymer and sustainable raw material. AngewandteChemie International Edition 44: 3358–3393. DOI: https://doi.org/10.1002/anie.200460587

Murphy, S.V.; Skardal, A.; Atala, A. (2013), Evaluation of hydrogels for bio-printing applications. J. Biomed. Mater. Res. Part A, 101A, 272–284. DOI: https://doi.org/10.1002/jbm.a.34326

Musa, Y., Musa, H., Suleiman, M., Yahaya, S. And Yahuza, Z. A (2021) Polyacrylamide Hydrogels for Application in Oral Drug Delivery, Nigerian Journal of Scientific Research, 20(4), 390-396.

Pourjavadi, A. and Hosseinzadeh, H. (2010). Synthesis and properties of partially hydrolyzed acrylonitrileco- acrylamide superabsorbent hydrogel. Bulletin of the Korean Chemical Society31(11): 3163–3172. DOI: https://doi.org/10.5012/bkcs.2010.31.11.3163

Raafat, A.I.; Eid, M.; El-Arnaouty, M.B. (2012), Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, DOI: https://doi.org/10.1016/j.nimb.2012.04.011

Shen, X., Shamshina, J. L., Berton, P. and Rogers R. D. (2016). Hydrogels based on cellulose and chitin: fabrication, properties, and applications. Green Chemistry 18(1): 53–75. DOI: https://doi.org/10.1039/C5GC02396C

Shukla, N. B., Rattan, S. and Madras, G. (2012). Swelling and dye-adsorption characteristics of amphoteric superadsorbent polymer. Industrial and Engineering Chemistry Research,51: 14941-14948. DOI: https://doi.org/10.1021/ie301839z

Song, X.; Wang, K.; Tang, C. Q.; Yang, W. W.; Zhao, W. F.; Zhao, C. S. (2018). Design of arrageenan-Based Heparin-Mimetic Gel Beads as Self-Anticoagulant Hemoperfusion adsorbents. Biomacromolecules, 19, 1966–1978. DOI: https://doi.org/10.1021/acs.biomac.7b01724

Thakur, V. K. and Thakur, M. K. (2014). processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydrate Polymers109: 102–117. DOI: https://doi.org/10.1016/j.carbpol.2014.03.039

Tomi´c, S. L.;Mi´ci´c, M. M.; Dobi´c, S. N.; Filipovi´c, J. M.; Suljovruji´c, E. H. (2010). Smart poly(2-hydroxyethyl methacrylate/itaconic acid) hydrogels for biomedical application. Radiat. Phys. Chem., 79, 643–649. DOI: https://doi.org/10.1016/j.radphyschem.2009.11.015

Wang, Y., Shi, X., Wang, W. and Wang, A. (2013). Synthesis, characterization, and swelling behaviors of a pH-responsive CMC-g-poly(AA-co-AMPS) superabsorbent hydrogel. Turkish Journal of Chemistry 37(1): 149–159.

Yahaya, S. Adiya, Z. I. S. G. Adamu, S. S. Bature, H. B. Ibrahim, I. B. (2021). Swelling Behaviour of Starch-g-Acrylic Acid Hydrogel and its Potential Application in Removal of Rhodamine B and Alkali Blue Dyes, Nigerian Journal Of Technological Development, VOL. 18(2), 98-104. DOI: https://doi.org/10.4314/njtd.v18i2.3

Yahaya, S. Isah A. M., Adiya, Z. I. S. G. Zauro S. A., Shinkafi I. Y., and Darma S. M. (2021). Preparation of Starch-g-Acrylamide Hydrogel, Swelling behaviour and its Potential Application in Removal of Rhodamine B and Alkali Blue Dyes, KASU Journal Of Chemical Sciences, VOL. 1(1), 82-91.

Zeitler J. A, Taday P. F, Newnham D. A, Pepper M., Gordon K. C, Rades T. (2007). "Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting--a review". The Journal of Pharmacy and Pharmacology. 59 (2): 209–23. DOI: https://doi.org/10.1211/jpp.59.2.0008

Zhao, W.; Glavas, L.; Odelius, K.; Edlund, U.; Albertsson, A. C.(2014).A robust pathway to electrically conductive hemicellulose hydrogels with high and controllable swelling behavior. Polymer, 55, 2967–2976. DOI: https://doi.org/10.1016/j.polymer.2014.05.003

Published
2023-05-01
How to Cite
Yahaya S., Zauro S. A., Ibrahim U., Tolani A. M., Shinkafi I. Y., & Albashir Y. (2023). EFFECTS OF WATER, KOH, HCl AND IONIC STRENGTH ON SWELLING CAPACITY OF CARBOXYMETHYL CELLULOSE (CMC) BASED GRAFT COPOLYMER HYDROGEL. FUDMA JOURNAL OF SCIENCES, 7(2), 210 - 215. https://doi.org/10.33003/fjs-2023-0702-1729