GROWTH RESPONSES OF NANOPARTICLES-TREATED TOMATO (Solanum lycopersicum L.) CULTIVARS TO FUNGAL DISEASE STRESS

  • T. P. Terna
  • B. F. Oshinowo
Keywords: Culture Filtrates, Disease Stress, Fungal Pathogens, Nanoparticles, Tomato Cultivars

References

Ball, P. (.2002). Natural strategies for the molecular engineer. Nanotechnology, 13: 15-28.

Bok, J.W., Chung, D., Balajee, S.A., Marr, K.A., Andes, D., Nielsen, K.., Frisvad, J.C., Kirby, K.A., and Keller, N.P. (2006). Gliz, a transcriptional regulator of gliotoxin biosynthesis contributes to Aspergillous fumigatus virulence infect immune. Carbon N Y, 74: 6761-6768.

Cessna, S.G., Sears, V.E., Dickman, M.B., and Low, P.S. (2000). Oxalic Acid, a Pathogenicity Factor for Sclerotinia sclerotiorum, suppresses the Oxidative Burst of the Host Plant. Plant Cell, 12(11): 2191-2200.

Cobley, L.S, and Steele, W.M. (1976). An introduction to the botany of tropical crops second edition, Longman group limited London. Toxicology, 81: 607–619.

Dehkourdi, E.H. and Mosavi, M. (2013). Carbon nanotubes impacts the growth and expression of water channel protein in tomato. Biology Trace Element Resource, 155: 283-286.

Dutton, M.V., and Evans, C.S. (1996). Oxalate production by fungi: Its role in pathogenicity and ecology in the soil environment. Canadian Journal of Microbiology, 42: 881–895.

Elliot, M.L. (2017). Survival, growth and pathogenicity of Gaeumannomyces graminis var. graminis with different methods of long-term storage. Mycologia, 97(4): 901-907.

Hong, J., Wang, L., Sun, Y., Zhao, L., Niu, G., Tan, W., Rico, C.M., Peralta-Videa, J.R., Gardea-Torresdey, J.L. (2016). Foliar applied nanoscale and microscale CeCO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Science and the Total Environment, 564: 904–911.

Knapp, S.J. (2002). Tobacco to tomatoes: a phylogenetic perspective on fruit diversity in the solanaceae. Journal of Experimental Botany, 53(377): 2001-22.

Krishnaraj, C., Jagan, E.G., Ramachandran, R., Abirami, S.M., Mohan, N. and Kalaichelvan P.T. (2012). Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. Plant growth metabolism. Process Biochemistry, 47(4): 51-658.

Mahajan, P., Dhoke, S.K. and Khanna, A.S. (2011). Effect of nano-ZnO particle suspension on growth exposure. ACS Sustainable Chemistry English, 1(7): 768–778.

Marciano, P., DiLenna, P., and Magro, P. (1983). Oxalic acid, cell wall degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotiorum isolates on sunflower. Physiology and Plant Pathology, 22: 339–345.

Maxwell, D.P., and Lumsden, R.D. (1970). Oxalic acid production by Sclerotinia sclerotiorum in infected bean and in culture. Phytopathology, 60: 1395–1398.

Monamodi, E.L., Lungu, D.M., and Fite, G.L. (2013). Analysis of fruit yield and its components in determinate tomato (Lycopersicon lycoperscicum) using correlation and path coefficient. Botswana Journal of Agriculture and Applied Sciences, 9(1): 29-40.

Nel, A., Xia, T., Madler, L. and Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311: 622 – 627.

Oshinowo, B.F. (2018). Effect of nanoparticles treatment on the response of different tomato cultivars to fungal disease stress in Lafia, Nasarawa State, Nigeria. B.Sc. Project, Department of Botany, Federal University Lafia, Nigeria.

Roco, M.C. (2003). Broader societal issue on nanotechnology. Journal of Nanoparticles Research, 5: 181 – 189.

Shaw, A.K. and Hossain, Z. (2013). Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere, 93(6): 906–915.

Siddiqui, M. and Al-Whaibi, M.H. (2014). Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.). Saudi Biology Science, 21: 13–1.

Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Rajendran, V., and Kannan, N. (2012). Silica nanoparticles for increased silica availability in maize (Zea mays L.) seeds under hydroponic conditions. Current Nanoscience, 8: 902–908.

Terna, T.P., Akomolafe, G.F., Ubhenin, A., and Abok, J. (2018). Disease Responses of Different Tomato (Solanum lycopersicum L.) Cultivars Inoculated With Culture Filtrates of Selected Fungal Pathogens. Unpublished Manuscript.

Toup Tek Photonics (2013). ToupView Quick Help. Available online at: http://mmrc.caltech.edu/Microscope_Camera_AmScope/ToupViewHelpManual/05_Toup View_Quick_Help_en.pdf. Accessed on: 1/3/2019.

Varela, A.M., Seif, A. and Lohr, B. (2003). A guide to IPM in tomato production in Eastern and Southern Africa. The International Centre of Insect Physiology and Ecology (ICIPE). 144 p.

Zheng, L., L.V. Rujing, H. Junbin and J. Daohong (2010). Isolation, Purification, and Biological Activity of a Phytotoxin Produced by Stemphylium solani. Plant Diseases, 94: 1231-1237.

Zhou, T., and Boland, G.J. (1999). Mycelial growth and production of oxalic acid by virulent and hypovirulent isolates of Sclerotinia sclerotiorum. Cananadian Journal of Plant Pathology, 21: 93–99.

Published
2023-03-31
How to Cite
TernaT. P., & OshinowoB. F. (2023). GROWTH RESPONSES OF NANOPARTICLES-TREATED TOMATO (Solanum lycopersicum L.) CULTIVARS TO FUNGAL DISEASE STRESS. FUDMA JOURNAL OF SCIENCES, 3(1), 152 - 159. Retrieved from https://fjs.fudutsinma.edu.ng/index.php/fjs/article/view/1438