INVESTIGATION OF GEOTHERMAL ENERGY RESOURCE POTENTIAL USING AERO-MAGNETIC AND AERO-RADIOMETRIC DATA OF KANO, NIGERIA
Abstract
This study focused on investigating the geothermal resource potential in Kano using high resolution aeromagnetic and radiometric data. A total of sixteen (16) sheets of aeromagnetic data with a block dimension of 55 km x 55 km were processed. Thus, the spectral centroid method which result from low wave number part of the wave number-scaled (depth to the centroid) and high-wave-number portion of the power spectrum (depth to the top) were estimated. Thus, the Curie point depth (CPD), geothermal gradient and heat flow were determined using appropriate parameters. The results showed that the CPD values range from 4.27 km to 19.59 km with an average of 11.83 km, and geothermal gradient ranges from 29.6 oC/km to 135.7 oC/m with an average of 82.7 oC/km while the heat flow ranges from 74 mW/m2 to 339.2 mW/m2 with the average of 206.6 mW/m2. Areas with high heat flow and shallow CPD could be prospective areas for geothermal energy. The values of the radiogenic heat obtained in the study area range from 0.15 to 2.77 μW/m3. It was observed that the highest radiogenic heat generation in the area is greater than the average radiogenic heat values in the continental crust. The information obtained from temperature to depth model reveals that, the Curie temperature could be reached at the depths of 6 km within the regions.
References
Abdulwahab, M, Taiwo, A, Salako, A.K, Rafiu, A, Abbass A.A, and Alhassan, U. (2019). Assessment of Geothermal Potentials In Some Parts of Upper Benue Trough Northeast Nigeria Using Aeromagnetic Data;Journal of Geoscience, Engineering, Environment, and Technology Vol 04 No 01.doi: 10.25299/jgeet.4.1.2090.
Ayuba, M.G., and Lawal, M.K. (2019). Investigating Geothermal Energy Resource Potential in Parts of South Western Nigeria Using Aeromagnetic Data; Science World Journal Vol. 14(No 3).
Balogun, I. (2003). Rainfall and length of growing season in Nigeria International Research Institute for climate and society.
Bemsen, I.E., Chinwuko, A.I., Ogah V.E., Akiishi, M., Usman, A.O., & Udoh, A.C. (2019). Curie-Temperature Depth and Heat Flow Deduced from Spectral Analysis of Aeromagnetic Data over the Southern Bida Basin, West-Central Nigeria: Geosciences, 9 (2): 50-56 doi: 10.5923/j.geo.20190902.02.
Bhattacharyya, B.K., and Leu, L.K. (1975). Analysis of magnetic anomaliesoverYellowstone National Park: Mapping of Curie point isothermal surface for geothermal reconnaissance.Journal of Geophysical Research, 80 (32); 4461–4465, doi: 10.1029/JB080i032p04461.
Bhattacharyya, B.K., and Leu, L.K. (1977). Spectral Analysis of gravity and magnetic anomalies due to rectangular prismatic bodies.Geophysics, 42; 41–50 doi:10.1190/1.1440712.
Blakely, R.J. (1995). Potential theory in gravity and magnetic applications: Cambridge University Press.
Braun, J. (2009). Hot blanket in Earth’s deep crust. Nature: 458(7236), 292–293. https://doi.org/10.1038/458292a.
Chiozzi, P., Matsushima, J., Okubo, Y., Pasquale, V., and Verdoya, M. (2005). Curie point depths from spectral analysis of magnetic data incentral-southern EuropePhysics of the Earth and Planetary Interiors, 152(4); 267–276, doi:10.1016/j.pepi.2005.04.005.
Clauser, C., 2011, Radiogenic heat production of rocks, in Gupta, H., ed., Encyclopedia of Solid Earth Geophysics: Dordrecht, The Netherlands, Springer, p. 1018–1024, doi: 10 .1007 /978 -90 -481 -8702 -7_74 .
Dolmaz, M.N., Ustaomer, T., Hisarli, Z.M., and Orbay, N. (2005). Curiepoint depths variations to infer thermal structure of the crust at the African-Eurasian convergence zone, SW Turkey.Earth, Planets and Space, 57; 373–383.
Espinosa-Cardena, J.M., and Campos-Enriquez, J.O. (2008). Curie point depthfrom spectral analysis of aeromagnetic data from Cerro Prieto geothermal area, Baja California, Mexico.Journal of Volcanology and Geothermal Research, 176(4); 601–609,doi:10.1016/j.jvolgeores.2008.04.014.
Ezekiel, K. (2019). Geothermal Study Over Sokoto Basin Northwestern, Nigeria: International Journal of Engineering Science Invention (IJESI) ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726.
Falconer, J.D. (1911). The geology and geography of Northern Nigeria, MacMillan, London.
Ibe, S.O., and Uche, K.I. (2020). Assessment of Geothermal Energy Potential of Ruwan Zafi, Adamawa State and Environs, Northeastern Nigeria, using High Resolution Airborne Magnetic Data: Current Research in Geoscience 2020, Volume 10: 1.15;DOI: 10.3844/ajgsp.2020.1.15.
Jaupart, C, and Mareschal, J.C, (2007). Heat Flow and Thermal Structure of the Lithosphere; Institut de Physique du Globe de Paris, Paris, France, GEOTOP-UQAM-McGill, Montreal, QC, Canada.
Jessop, A.M., HAbart, M.A., and Sclater, J.G. (1977). The world heat flow data collection 1975. Geothermal services of Canada Ser 50: 55.77.
Kasidi and Nur, A. (2012) .Curie depth isotherm deduced from spectral analysis of Magnetic data over sarti and environs of North-Eastern Nigeria:Scholarly Journals of Biotechnology Vol. 1(3), Pp. 49-56. Nigerian Geological Survey Agency, NGSA. Geological Map of Latitude 11030' - 13030'and Longitude 4000' and 6000',2006.
Kearey, P., Klepeis, K.A., and Vine, F.J. (2009). Global tectonics, John Willey & Sons.
LúdvÃk S. Georgsson (2009). Geophysical methods used in geothermal exploration United Nations University Geothermal Training Programme Orkustofnun, Reykjavik, ICELAND lsg@os.is
Megwara, U.J., Udensi, E.E., Olasehinde, I.P., Daniyan, A.M., and Lawal K.M. (2013). Geothermal and Radioactive Heat Studies of Parts of Southern Bida Basin, Nigeria and the Surrounding Basement Rocks; international journal of Basic and Applied Sciences 2(1)123.
Mccurry, P. (1989). A general review of the geology of the Precambrian to Lower Palaeozoic rocks of northern Nigeria. In: Kogbe, C. A. (ed) Geology of Nigeria, 2 nd Ed., Rock View (Nigeria) Limited.
Nigerian Geological Survey Agency (2004). Acquisation of Aeromagnetic and Radiometric data by Fugro airborne.
Ofor, N.P., and Udensi, E.E. (2014). Determination of the Heat flow in the Sokoto Basin, Nigeria Using Spectral Analysis of Aeromagnetic Data. Journal of Natural Science Research: Vol. 4, No. 6, Pp. 83-93.https://dx.doi.org/10.4314/ijs.v23i1.17
Nwankwo, L.I., and Shehu, A.T. (2015). Evaluation of Curiepoint depths, geothermal gradients and near-surface heat flow from high-resolution aeromagnetic (HRAM) data of the entire Sokoto Basin. Journal of Volcanol Geothermal Research Vol30 No5, pp 45–55.
Nwankwo, L.I., and Sunday, A.J. (2017). Regional Estimation of Curie-point Depths and Succeeding geothermal parameters from recently acquired high-resolution aeromagnetic data of the entire Bida Basin, north-central Nigeria. Geothermal Energy Science, 5(1), 1.
Okubo, Y., Graf, R.J., Hansen, R.O., Ogawa, K., and Tsu, H. (1985). Curie point depths of the island of Kyushu and surrounding area, Japan; Geophysics,50 (3) 481–489, doi: 10.1190/1.1441926.
Okubo, Y., and Matsunaga, T. (1994). Curie point depth in northeast Japanand its correlation with regional thermal structure and seismicity.Journal of Geophysical Research, 99 (B11); 22363–22371, doi:10.1029/94JB01336.
Rajaram, M., Anand, S.P., Hemant, K. and Purucker, M.E. (2009). Curie isotherm map of Indian subcontinent from satellite and aeromagnetic data. Earth and Planetary Science Letters, 281(3–4); 147–158,doi:10.1016/j.epsl.2009.02.013.
Ravat, D., Pignatelli, A., Nicolosi, I., and Chiappini, M. (2007). A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data, Geophysical Journal International, 169: 421-434.
Ravat, D, Morgan, P. and Lowry, A.R, (2016). Geotherms from the temperature-depth–constrained solutions of 1-D steady-state heat-flow equation Geosphre, V. 12, no. 4, p. 1187-1197, doi:10.1130/GES01235.1.
Robertson, E.C. (1988). Thermal properties of rocks. Report 88-441. US Department of the Interior: Geological Survey, 106. https://doi.org/10.3133/ofr88441.
Ross, H.E., Blakely, R.J., and Zoback, M.D. (2006). Testing the use of aeromagnetic data for the determination of Curie depth in California. Geophysics, 71(5) L51–L59, doi: 10.1190/1.2335572.
Rybach, K., Hokrick, R., and Eugester, W. (1988). Vertical earth probe measurements and prospects in Switzerland, Commun. Proc. 1 67–372.
Salem, A., Abouelhoda, E., Alaa, A., Atef, I., Sachio, E., and Keisuke, U. (2005). Mapping Radioactive Heat Production from Airborne Spectral Gamma-Ray Data of Gebel Duwi Area, Egypt. Proceedings World Geothermal Congress, Antalya, turkey, 24-29.
Schoenech and Askira (1987). Map of surface temperature ranges within Nigeria.
Spector, A., and Grant, F.S. (1970). Statistical model for interpreting aeromagnetic data.Geophysics, 35(2); 293–302.
Tanaka, A., Okubo, Y., and Matsubayashi, O. (1999). Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics, 306(3–4); 461–470.
Trifonova, P., Zhelev, Z., Petrova, T., and Bojadgieva, K. (2009). Curie point depths of Bulgarian territory inferred from geomagnetic observations andits correlation with regional thermal structure and seismicity.Tectonophysics, 473(3–4); 362–374, doi:10.1016/j.tecto.2009.03.014.
Wollenberg, H.A., and Smith, A.R., (1987). Radiogenic heat production of crustal rocks: An assessment based on geochemical data: Geophysical Research Letters, v. 14, p. 295–298, doi: 10 .1029 /GL014i003p00295.
Copyright (c) 2022 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences