LAND SURFACE TEMPERATURE INVESTIGATION AROUND IKOGOSI WARM SPRING NIGERIA USING LANDSAT8 DATA
Abstract
Ikogosi warm spring (IWS) is among the most visited geothermal resource by tourists in Nigeria. On that basis, it has attracted so much attention from researchers using various geophysical methods, except the retrieval of the land surface temperature (LST) from remote sensing data. This work aimed at computing LST to delineate hot zone around Ikogosi geothermal resources. The split-window approach was used to compute the LST from Landsat 8 data. The interpretation of Landsat8 data revealed that the central region of the study area is of high LST, and the temperature then drops towards the southwest direction. The result also shows that the warm spring is situated around a region with high land surface temperature (about 29 °C) which is an indication of a geothermal reservoir. The supervised classification of the LST yields two zones of the high density of pixels with high temperature, hot spot zones. The hot spot zone west of IWS is believed to be the heat source of IWS as it has high LST, and it is closer to IWS while the hot spot zone NW of IWS shows an indication of a viable geothermal resource, high LST
References
Abraham, E.M., Lawal, K. M., Ekwe, A. C., Alile, O., Murana, K. A., and Lawal, A. A. (2014). Spectral analysis of aeromagnetic data for geothermal energy investigation of Ikogosi Warm Spring - Ekiti State, southwestern Nigeria. Geothermal Energy, 2(1), 1–21. https://doi.org/10.1186/s40517-014-0006-0
Adegbuyi, O. & Abimbola, A.F., 1997. Energy resource potential of Ikogosi Warm Spring Area, Ekiti State, Southwestern Nigeria, African Journal of Science, 1(2), 111–117
Adegbuyi, O., Ajayi, O.S., and Odeyemi, I. B. (1996). Prospects of hot-dry-rock (HDR) geothermal energy spectrophotoresource around the Ikogosi warm spring in Ekiti state, Nigeria. Nigerian Journal of Renewable Energy, 4, 58–64.
Bello, Y.A., Lawal, K.M., Dewu, B.B.M. and Ikpkonte, A.E. (2020) Use of at-satelite temperature for geothermal investigation in Ikogosi. FUDMA Journal of Sciences, 4(1): 389 – 394.
Carlson, T.N., and Ripley, D.A. (1997). On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62(3), 241–252. https://doi.org/10.1016/S0034-4257(97)00104-1
Chan, H., Chang, C. and Dao, P.D. (2018). Geothermal anomaly mapping using Landsat ETM+ Data in Ilan Plain, Plain, Northeastern Taiwan. Elsevier, Pure and Applied Geophysics, 175: 303 – 323.
Heasler, H., Jaworowski, C., and Foley, D. (2009). Geothermal systems and monitoring hydrothermal features. Geological Monitoring, 105 - 140.
Jiménez-Munoz, J.C. and Sobrino, J.A. (2003). A generalized single-channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research D: Atmospheres, 108(22). https://doi.org/10.1029/2003jd003480
Jimenez-Munoz, J.C., Sobrino, J.A., Skokovic, D., Mattar, C. and Cristobal, J. (2014). Land surface temperature retrieval methods from landsat-8 thermal infrared sensor data. IEEE Geoscience and Remote Sensing Letters, 11(10), 1840–1843. https://doi.org/10.1109/LGRS.2014.2312032
Nicholson, K. (1993). Geothermal Fluids: Chemistry and exploration techniques. Springer
Norman, J. M., and Becker, F., 1995. Terminology in thermal infrared remote sensing of natural surfaces. Remote Sensing Reviews, 12: 159 – 173.
Ojo, J.S., Olorunfemi, M.O. and Falebita, D.E. (2011). An appraisal of the geologic structure beneath the Ikogosi warm spring in South-Western Nigeria using integrated surface geophysical methods. In Earth Sciences Research Journal (Vol. 15, Issue 1, pp. 27–34).
Olorunfemi, M.O., Adepelumi, A.A., Falebita, D.E. & Alao, O.A., 2011. Crustal thermal regime of Ikogosi warm spring, Nigeria inferred from aeromagnetic data, Arabian Journal of Geosciences, doi:10.1007/s12517011-0486-1.
Skokovic, D., Sobrino, J. a., Jiménez Muñoz, J. C., Soria, G., Julien, Y., Mattar, C., and Cristóbal, J. (2014). Calibration and Validation of land surface temperature for Landsat8- TIRS sensor TIRS LANDSAT-8 CHARACTERISTICS. Land Product Validation and Evolution ESA/ESRIN, 27. https://doi.org/10.1063/1.452862
Sobrino, J.A. and Raissouni, N. (2000). Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco. International Journal of Remote Sensing, 21(2), 353–366. https://doi.org/10.1080/014311600210876
Sobrino, José A., Jiménez-Muñoz, J. C., Sòria, G., Romaguera, M., Guanter, L., Moreno, J., Plaza, A., and MartÃnez, P. (2008). Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Transactions on Geoscience and Remote Sensing, 46(2), 316–327. https://doi.org/10.1109/TGRS.2007.904834
Copyright (c) 2021 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences