PHYTOCHEMICAL, ANTIOXIDANT AND ANTIMICROBIAL STUDIES OF THE CRUDE EXTRACT OF Curvulariasp. ISOLATED FROM THE LEAVES OF THE MEDICINAL PLANT Piliostigma thonningii (Fabaceae)

Authors

  • Cyril Ogbiko Madonna University Elele Rivers State
  • C. J. Eboka
  • U. M. Okezie
  • F. B. C. Okoye

DOI:

https://doi.org/10.33003/fjs-2021-0503-687

Keywords:

Antioxidant, Antimicrobial, Curvulariasp, Phytochemical, Secondary Metabolites

Abstract

Recently, there is biotechnological interest in secondary metabolites of endophytes since they have been shown to be capable of producing substances of pharmacological importance. Piliostigmathonningii is a tree whose parts are widely employed in Nigeria for diverse medicinal applications. The aim of this study is to investigate the phytochemical composition, the antiradical and in vitro antimicrobial potentials of the crude ethyl acetate extract of Curvularia sp isolated from the leaves of the plant. The endophytic fungus was isolated, purified, and identified using conventional methods. While standard procedures was employed in the determination of the phytochemical constituents, quantitative estimation of the total phenol and flavonoid were done by spectrophotometric method using gallic acid and quercetin as standards respectively. While the antioxidant activity was determined by DPPH scavenging assay, the agar well diffusion method was employed to screen for its antimicrobial capabilities. Results showed the presence ofimportant phytoconstituents notably alkaloid, flavonoid, phenolics, tannin, saponins among others. While the antioxidant assay showed the total phenolic and flavonoid contents to be 212.55 ± 1.2 mgGAE/g extract and 143.16 ± 0.8 mgQE/g extract respectively, a 74.45 ± 0.11% free radical scavenging activity was observed compared to ascorbic acid standard that exhibited a 87.92 ± 0.17% inhibition. At the highest investigated concentration of 1 mg/mL, the extract produced antibacterial activity only against Escherichia coliandPseudomonas aeruginosa. The results showed that the extract exhibits marked antioxidant and selected antibacterial effects thus justifying the assertion that endophytic bioactive compounds have promising applications in the field of medicine.

References

Ahmadov, A. I., Naeem, M., Qocayeva, M. V. & Tarverdiyeva, V. A. (2018). Analytical Solutions of the Schrödinger Equation for the Manning-Rosen plus Hulthén Potential Within SUSY Quantum Mechanics. J. Phys.: Conference Series, 965, 012001. https://doi.org/10.1088/1742-6596/965/1/012001

Chen, Z.-Y., Li, M. & Jia, C.-S. (2009). Approximate analytical solutions of the Schrödinger equation with the Manning–Rosen potential model. Mod. Phys. Lett. A, 24, 1863–1874 https://doi.org/10.1142/S0217732309030345

Dong, S.-H. & Cruz-Irisson, M. (2011). Energy spectrum for a modified Rosen-Morse potential solved by proper quantization rule and its thermodynamic properties. J. Math. Chem., 50, 881–892 https://doi.org/10.1007/s10910-011-9931-3

Eshghi, M., Sever, R. & Ikhdair, S. M. (2019). Thermal and optical properties of two molecular potentials. Eur. Phys. J, Plus, 134, 155 https://doi.org/10.1140/epjp/i2019-12634-x

Eyube, E.S., Jabil, Y.Y. & Umar, W. (2019a). Bound state solutions of Non-relativistic Schrödinger equation with Hellmann potential within the frameworks of generalized Pekeris approximation of the centrifugal term potential. J. NAMP., 52, 215

Eyube, E.S., Yerima, J.B. & Ahmed, A.D. (2021). J – state solutions and thermodynamic properties of the Tietz oscillator. Phys. Scr. 96, 055001 https://doi.org/10.1088/1402-4896/abe3be

Eyube, E.S., Sanda, A. & Jabil, Y.Y (2019b). ℓ-wave analytical solutions of Schrödinger equation with Tietz-Hua potential. Trans. NAMP., 10, 51

Eyube, E.S., Yabwa, D. & Yerima, J.B. (2019c). Bound state solutions of Non-relativistic Schrödinger equation with Hellmann potential within the frameworks of generalized Pekeris approximation of the centrifugal term potential. J. NAMP., 52, 215

Eyube, E.S., Ahmed, A.D. & Hussaini, M. (2020a). Vibrational energy levels and mean values of the deformed Hulthén plus shifted Tietz-Wei oscillator. NJP. 29, 168

Eyube, E. S., Ahmed, A. D. & Timtere, P. (2020b). Eigensolutions and expectation values of shifted-rotating Möbius squared oscillator. Eur. Phys. J. Plus, 135, 893 https://doi.org/10.1140/epjp/s13360-020-00915-6

Eyube, E.S., Rawen B.O. & Ibrahim N. (2021b). Approximate analytical solutions and mean energies of stationary Schrödinger equation for the general molecular potential. Chin. Phys. B https://doi.org/10.1088/1674-1056/abe371

Eyube, E.S., Hussaini, M. & Ahmed, A.D. (2020c). Vibrational partition function and approximate solutions of Schrödinger equation with improved Tietz potential plus generalized Hulthén potential. NJP. 29, 180

Hassanabadi, H., Yazarloo, B. H., Ikot, A. N., Salehi, N. & Zarrinkamr, S. (2013a). Exact analytical versus numerical solutions of Schrödinger equation for Hua plus modified Eckart potential. Indian J. Phys., 87, 1219–1223 https://doi.org/10.1007/s12648-013-0368-3

Hassanabadi, H., Yazarloo, B. H., Mahmoudieh, M. & Zarrinkamar, S. (2013b). Dirac equation under the Deng-Fan potential and the Hulthén potential as a tensor interaction via SUSYQM. Eur. Phys. J. Plus, 128, 111 https://doi.org/10.1140/epjp/i2013-13111-4

Horchani, R., Al-Aamri, H., Al-Khindi, N., Ikot, A.N., Okorie, U.S., Rampho, G.J. & Jelassi, H. (2021). Energy spectra and magnetic properties of diatomic molecules in the presence of magnetic and AB fields with the inversely quadratic Yukawa potential. Eur. Phys. J. D 75, 36 https://doi.org/10.1140/epjd/s10053-021-00038-2

Ikhdair, S. M. (2011). On the bound-state solutions of the Manning–Rosen potential including an improved approximation to the orbital centrifugal term. Phys. Scr., 83, 015010. https://doi.org/10.1088/0031-8949/83/01/015010

Ikhdair, S. M. (2009). An improved approximation scheme for the centrifugal term and the Hulthén potential. Eur. Phys. J. A, 39, 307–314. https://doi.org/10.1140/epja/i2008-10715-2

Ikhdair, S. M. & Sever, R. (2010). Approximate bound state solutions of Dirac equation with Hulthén potential including Coulomb-like tensor potential. Appl. Math. Comput., 216, 911–923 https://doi.org/10.1016/j.amc.2010.01.104

Ikot, A. N., Zarrinkamar, S., Ibanga, E. J., Maghsoodi, E. & Hassanabadi, H. (2014). Pseudospin symmetry of the Dirac equation for a Möbius square plus Mie type potential with a Coulomb-like tensor interaction via SUSYQM. Chinese Physics C, 38, 013101 https://doi.org/10.1088/1674-1137/38/1/013101

Jia, C.-S., Liu, J.-Y. & Wang, P.-Q. (2008). A new approximation scheme for the centrifugal term and the Hulthén potential. Phys. Lett. A, 372, 4779–4782 https://doi.org/10.1016/j.physleta.2008.05.030

Jia, C.-S., Chen, T. & Cui, L.-G. (2009). Approximate analytical solutions of the Dirac equation with the generalized Pöschl–Teller potential including the pseudo-centrifugal term. Phys. Lett. A, 373, 1621–1626. https://doi.org/10.1016/j.physleta.2009.03.006

Liu, J.-Y., Hu, X.-T. & Jia, C.-S. (2014). Molecular energies of the improved Rosen−Morse potential energy model. Can. J. Chem., 92, 40–44 10.1139/cjc-2013-0396

Lucha, W. & Schöberl, F. F. (1999). Solving The Schrödinger Equation for Bound States with Mathematica 3.0. Int. J. Mod. Phys. C, 10, 607–619 https://doi.org/10.1142/S0129183199000450

Meyur, S. & Debnath, S. (2009). Solution of the Schrödinger equation with Hulthén plus Manning-Rosen potential. Lat. Am. J. Phys. Educ., 3, 300–306

Nikoofard, H., Maghsoodi, E., Zarrinkamar, S., Farhadi, M. & Hassanabadi, H. (2013). The nonrelativistic Tietz potential. Turk. J. Phys., 37, 74–82 doi.org/10.3906/fiz- 1207 - 1

Sous, A. J. (2019). Asymptotic iteration method applied to new confining potentials. Pramana J. Phys., 93, 22 https://doi.org/10.1007/s12043-019-1782-7

Tsaur, G. & Wang, J. (2013). A universal Laplace-transform approach to solving Schrödinger equations for all known solvable models. Eur. J. Phys., 35, 015006. https://doi.org/10.1088/0143-0807/35/1/015006

Varshni, Y. P. (1990). Eigenenergies and oscillator strengths for the Hulthén potential. Phys. Rev. A, 41, 4682–4689 https://doi.org/10.1103/PhysRevA.41.4682

Wei, G.-F. & Dong, S.-H. (2008). Approximately analytical solutions of the Manning–Rosen potential with the spin–orbit coupling term and spin symmetry. Phys. Lett, A, 373, 49–53 https://doi.org/10.1016/j.physleta.2008.10.064

Xu, Y., He, S. & Jia, C.-S. (2010). Approximate analytical solutions of the Klein–Gordon equation with the Pöschl–Teller potential including the centrifugal term. Phys. Scr., 81, 045001. https://doi.org/10.1088/0031-8949/81/04/045001

Yahya, W. A. & Oyewumi, K. J. (2016). Thermodynamic properties and approximate solutions of the ℓ-state Pöschl–Teller-type potential. J. Assoc. Arab Univ. Basic Appl. Sci., 21, 53–58 https://doi.org/10.1016/j.jaubas.2015.04.001

Yanar, H., Taş, A., Salti, M. & Aydogdu, O. (2020). Ro-vibrational energies of CO molecule via improved generalized Pöschl–Teller potential and Pekeris-type approximation. Eur. Phys. J. Plus, 135, 292 https://doi.org/10.1140/epjp/s13360-020-00297-9

Published

2021-11-03

How to Cite

Ogbiko, C., Eboka, C. J., Okezie, U. M., & Okoye, F. B. C. (2021). PHYTOCHEMICAL, ANTIOXIDANT AND ANTIMICROBIAL STUDIES OF THE CRUDE EXTRACT OF Curvulariasp. ISOLATED FROM THE LEAVES OF THE MEDICINAL PLANT Piliostigma thonningii (Fabaceae). FUDMA JOURNAL OF SCIENCES, 5(3), 281 - 285. https://doi.org/10.33003/fjs-2021-0503-687