ORDER AND CONVERGENCE OF THE ENHANCED 3-POINT FULLY IMPLICIT SUPER CLASS OF BLOCK BACKWARD DIFFERENTIATION FORMULA FOR SOLVING INITIAL VALUE PROBLEM
Abstract
This paper studied an enhanced 3-point fully implicit super class of block backward differentiation formula for solving stiff initial value problems developed by Abdullahi & Musa and go further to established the necessary and sufficient conditions for the convergence of the method. The method is zero stable, A-stable and it is of order 5. The method is found to be suitable for solving first order stiff initial value problems
References
Brugano L. &Trigiante D. (1998); Solving differential problem by multistep initial andBoundary value method: Gordon and Breach Science publication. Amsterdam.
Curtis C.F. and HirschfelderJ.O (1952).; Integration of stiff Equations, National Academy of Sciences. Vol.38: 235-243.
Cash J.R. (1980), on the integration of stiff systems of ODEs using extended backward differentiation formulae, Numerical Mathematics. Vol.34: 235-246.
Chu M.T, Hamilton H. (1987); Parallel solution of ODE’s by multi-block methods.SIAM. J Sci. Stat. Comput. Vol.8: 342-353.
DahlquishC.G (1974), Problem related to the numerical treatment of stiff differentialequations. International Computing Symposium: Vol. 307 – 314.
Henrici, P. (1962); Discrete Variable Methods in ODEs. New York: John Wiley.
Ibrahim Z.B, Othman K.I. and Suleiman M.B (2007); Implicit r-point block backward differentiation formula for first order stiff ODEs, Applied Mathematics and Computation. Vol.185: 558-565.
Milner, W.E, (1953); Numerical solution of differential equation. John Wiley, New York
Musa H, MB Sulaiman, F ismail, N Senu, ZA Majid, ZB Ibrahim (2014), A new fifth Order implicit block method for solving first order stiff ordinary differential equation. Malaysian Journal of Mathematical Science. Vol. 5: 45-59.
Musa H., Suleiman M.B. and Senu N (2012A); fully implicit block extended backward differentiation formulas for solving stiff IVPs, Applied mathematical Sciences Vol. 6: 4211-4228.
Musa H, MB Sulaiman, F Ismail, ZB Ibrahim (2013); An accurate block solver for stiff initial value problems. ISRN Applied Mathematics. Hindawi.
Musa H., Suleiman M.B., Ismail F, Senu N, ZB Ibrahim (2012B); An improved 2-point block backward differentiation formula for solving initial value problems. AIP Conference proceeding. Vol. 1522: 211-220.
Babangida B, Musa H (2016); Convergence of the 2-point diagonally implicit super class of BBDF with off-step point for solving IVPs. J ApplComputat Math 5:330.dol. 10.4172/2168 – 9679.1000330
Musa H, M.A.Unwala (2019); Extended 3-point super class of block backward differentiation formula for solving initial value problem. 38th conference of National Mathematical Science university of Nigeria.Nsukka.
Musa Hamisu, Bala Najamuddeen (2019); 3-Point diagonally implicit super class of block backward differentiation formula for solving initial value problem. Dutse journal of pure and applied science (DUJOPAS), Vol. 5 NO. 1b June 2019.
Copyright (c) 2021 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences