RO-VIBRATIONAL PARTITION FUNCTION AND MEAN THERMAL ENERGY OF THE IMPROVED WEI OSCILLATOR
Abstract
In this paper, the improved Wei oscillator has been used to model the experimental Rydberg-Klein-Rees data of the X2 Σg+ state of N2+ diatomic ions. Average absolute deviation from the dissociation energy of 0.3211% and mean absolute percentage deviation of 0.6107% were obtained. These results are quite satisfactory since they are within error requirement rate of less than 1% of the Lippincott’s criterion. Using an existing equation in the literature for bound state ro-vibrational energy, expressions for ro-vibrational partition function and mean thermal energy were derived for the improved Wei oscillator within the context of classical physics. The formulas obtained for ro-vibrational partition function and mean thermal energy were subsequently applied to the spectroscopic data of N2+ (X2 Σg+) diatomic ions. Studies have revealed that the partition function of the system decreases monotonically with decrease in temperature and increases with increase in upper bound vibrational quantum number. On the other hand, the mean thermal energies of the diatomic ions show an initial sharp decrease when the temperature is decreased and afterwards remains fairly stable as the temperature is further lowered. The results obtained in this work may find suitable applications in astrophysics were potential energy functions are required to model experimentally determined potential energy data with high precision. The work may also be useful in many other areas of physics which include: chemical physics, molecular physics, atomic physics and solid-state physics
References
Dong, S.-H. and Gonzalez-Cisneros, A. (2008). Energy spectra of the hyperbolic and second Pöschl–Teller like potentials solved by new exact quantization rule. Ann. Phys. (N. Y.) 323: 1136–1149 https://doi.org/10.1016/j.aop.2007.12.002
Edet, C. O., Okorie, U. S., Ngiangia, A. T. and Ikot, A. N. (2019). Bound state solutions of the Schrodinger equation for the modified Kratzer potential plus screened Coulomb potential. Indian J. Phys. 94: 425-433 https://doi.org/10.1007/s12648-019-01477-9
Eshghi, M., Sever, R. and Ikhdair, S. M. (2018). Energy states of the Hulthén plus Coulomb-like potential with position-dependent mass function in external magnetic fields. Chin. Phys. B 27: 020301 https://doi.org/10.1088/1674-1056/27/2/020301
Eyube, E. S., Yabwa, D. and Wadata, U. (2020a). Rotational-vibrational eigensolutions of the D-dimensional Schrödinger equation for the improved Wei potential. FJS, 4: 269-283 https://doi.org/10.33003/fjs-2020-0402-174
Eyube, E. S., Ahmed, A. D. and Timtere, P. (2020b). Eigensolutions and expectation values of shifted-rotating Möbius squared oscillator. Eur. Phys. J. Plus 135: 893 https://doi.org/10.1140/epjp/s13360-020-00915-6
Eyube, E.S., Yerima, J.B. and Ahmed, A.D. (2021). J – state solutions and thermodynamic properties of the Tietz oscillator. Phys. Scr. 96: 055001 https://doi.org/10.1088/1402-4896/abe3be
Falaye, B. J., Ikhdair, S. M. and Hamzavi, M. (2015). Shifted Tietz–Wei oscillator for simulating the atomic interaction in diatomic molecules. J. Theor. Appl. Phys. 9: 151–158 https://doi.org/10.1007/s40094-015-0173-9
Ikot, A. N., Okorie, U. S., Sever, R. and Rampho, G. J. (2019). Eigensolution, expectation values and thermodynamic properties of the screened Kratzer potential. Eur. Phys. J. Plus. 134: 386 https://doi.org/10.1140/epjp/i2019-12783-x
Ikot, A.N., Okorie, U.S., Osobonye, G. Amadi, P.O., Edet, C.O., Sithole, M.J., Rampho, G.J. and Sever, R. (2020a). Superstatistics of Schrödinger equation with pseudo-harmonic potential in external magnetic and Aharanov-Bohm fields. Heliyon 6: e037738 https://doi.org/10.1016/j.heliyon.2020.e03738
Ikot, A. N., Rampho, G. J., Amadi, P. O., Sithole, M. J., Okorie, U. S., & Lekala, M. I. (2020b). Shannon entropy and Fisher information-theoretic measures for Mobius square potential. The Eur. Phys. J. Plus. 135:503 https://doi.org/10.1140/epjp/s13360-020-00525-2
Jia, C.-S., Diao, Y.-F., Liu, X.-J., Wang, P.-Q., Liu, J.-Y. and Zhang, G.-D. (2012). Equivalence of the Wei potential model and Tietz potential model for diatomic molecules. J. Chem. Phys. 137: 014101 https://doi.org/10.1063/1.4731340
Khordad, R. and Mirhosseini, B. (2015). Application of Tietz potential to study optical properties of spherical quantum dots. Pramana J. Phys. 85: 723–737 https://doi.org/10.1007/s12043-014-0906-3
Kunc, J. A. and Gordillo-Vázquez, F. J. (1997). Rotational−Vibrational Levels of Diatomic Molecules Represented by the Tietz−Hua Rotating Oscillator. J. Phys. Chem. A 101: 1595–1602 https://doi.org/10.1021/jp962817d
Onate, C.A., Onyeaju, M.C., Bankole, D.T. and Ikot, A.N. (2020). Eigensolution techniques, expectation values and Fisher information of Wei potential function. J. Mol. Model. 26: 311 https://doi.org/10.1007/s00894-020-04573-4
Onate, C.A., Onyeaju, M.C., Omugbe, E., Okon, B.I. and Osafile, O.E. (2021). Bound-state solutions and thermal properties of the modified Tietz-Hua potential. Scientific Reports. 11: 2129 https://doi.org/10.1038/s41598-021-81428-9
Oyewumi, K. J., Falaye, B. J., Onate, C. A., Oluwadare, O. J. and Yahya, W. A. (2013). Thermodynamic properties and the approximate solutions of the Schrödinger equation with the shifted Deng–Fan potential model. Mol. Phys. 112: 127–141 https://doi.org/10.1080/00268976.2013.804960
Romera, E., Sánchez-Moreno, P. and Dehesa, J. S. (2005). The Fisher information of single-particle systems with a central potential. Chem. Phys. Lett. 414: 468–472 https://doi.org/10.1016/j.cplett.2005.08.032
Singh, R. B. and Rai, D. K. (1966). Potential-energy curves for O2+, N2+ and CO+. J. Mol. Spectrosc. 19: 424–434 https://doi.org/10.1016/0022-2852(66)90265-7
Tang, H.-M., Liang, G.-C., Zhang, L.-H., Zhao, F. and Jia, C.-S. (2014). Molecular energies of the improved Tietz potential energy model. Can. J. Chem. 92: 201–205 https://doi.org/10.1139/cjc-2013-0466
Wu, L., Zhang, S. and Li, B. (2019). Fisher information for endohedrally confined hydrogen atom. Phys. Lett. A 384: 126033 https://doi.org/10.1016/j.physleta.2019.126033
Yahya, W. A. and Oyewumi, K. J. (2016). Thermodynamic properties and approximate solutions of the ℓ-state Pöschl–Teller-type potential. J. Assoc. Arab Univ. Basic Appl. Sci. 21: 53–58 https://doi.org/10.1016/j.jaubas.2015.04.001
Yanar, H., Taş, A., Salti, M. and Aydogdu, O. (2020). Ro-vibrational energies of CO molecule via improved generalized Pöschl–Teller potential and Pekeris-type approximation. Eur. Phys. J. Plus, 135: 292 https://doi.org/10.1140/epjp/s13360-020-00297-9
Copyright (c) 2021 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences