ANTI-MALARIAL EFFECTS OF FIVE TRADITIONAL NIGERIAN MEDICINAL PLANT EXTRACTS ON PLASMODIUM BERGHEI-INFECTED RATS

  • Ugochukwu Vincent Igbokwe
  • EJIKE DANIEL Eze DEPARTMENT OF PHYSIOLOGY, KABALE UNIVERSITY, UGANDA
  • Moses Dele Adams
  • Karimah Mohammed Rabiu
  • Iliya Ezekiel
  • Prisca Ojochogu Ajeka
  • Peace Ogechukwu Okpara
Keywords: Malaria, Plasmodium berghei, Vernonia amygdalina, Parasitemia

Abstract

This work focusses on comparative determination of the effects of plant extracts: bitter leaf (BL), sour lime (SL), grape (G), pawpaw (PP) and unripe pineapple (UPA) in female rats induced into malaria with Plasmodium berghei. Thirty female rats weighing 120-160 g were allotted into five groups (n=6). Group A (negative control) were infected but not treated. Animals in Groups B–E which were infected were given 500 mg/kg body weight (BW) of malanter DS (reference antimalarial drug), 500 mg/kg BW of BL, 250 mg/kg BW each of SL and BL as well as 250 mg/kg BW each of G, PP and UPA. Treatment was done orally once daily for 14 days after which a few related analyses were carried out. Before treatment, parasitemia count of animals in groups B-E was substantially (p<0.05) higher when juxtaposed with group A. AST and ALT activities was substantively (p<0.05) elevated in group B-E when matched with group A. Plasmodium berghei induction notably (p<0.05) lowered white blood cell (WBC) and monocyte (Mono) levels at all groups. After 7 days of treatment, the extracts and drug which appreciably (p<0.05) lowered plasmodium count, RBC, WBC, PCV, Hb, Plat, Lymph, Mono, Granul levels did not meaningfully (p>0.05) affect the activities of ALP, AST and ALT. After 14 days of treatment, the extracts and drug exceptionally (p<0.05) reduced plasmodium count, WBC and ALP activity at all groups. These results give suggestive evidence that the plant extracts either singly or combined, could be a promising anti-plasmodial candidate.

References

Adaramoye, O. A., Osaimoje, D. O., Akinsanya, A. M., Nneji, C. M., Fafunso, M. A. and Ademowo, O. G. (2008). Changes in antioxidant status and biochemical indices after acute administration of artemether, artemether-lumefantrine and halofantrine in rats. Basic and Clinical Pharmacology and Toxicology, 102(4): 412–418.

Adebayo, J. O. and Krettli, A. U. (2011). Potential antimalarials from Nigerian plants: a review. Journal of Ethnopharmacology, 133(2): 289–302.

Akerele, O. (1993). Natures medicinal bounty: don’t throw it away. World Health Forum, 14:390-395.

Anowai, C. F., Ike, C., Ezeokafor, E. and Alloysius, A. N. (2015). Investigation into the anti-malarial activity of the aqueous leaf extract of Nauclea latifolia using curative method. Journal of Pharmacognosy and Phytochemistry, 4(4): 69-72.

Arese, C. (2001). Malaria: Its Human Impact Challenges and Control Strategies in Nigeria. Harvard Health Policy Review, 2(2): 1-3.

Basco, L. K., Mitaku, S., Skaltsounis, A. L., Ravelomanaintsoa, N., Tillequin, F., Koch, M. and Le-Bras, J. (1994). In vivo activities of acridone alkaloids against Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 5: 1169–1171.

Bihonegn, T., Giday, M., Yimer, G., Animut, A. and Sisay, M. (2019). Antimalarial activity of hydromethanolic extract and its solvent fractions of Vernonia amygdalina leaves in mice infected with Plasmodium berghei, SAGE Open Medicine, 7:1–10.

Bruce, C. P. (2015). Introductory statistics and analytics: A Resampling perpective. 320, 2015. Wiley Publisher, 1st Edition, ISBN 9781118881330.

Clarkson, C., Maharaj, V. J., Crouch, N. R., Grace, O. M., Pillay, P., Matsabisa, M. G. and Folb, P. I. (2004). In vitro antiplasmodial activity of medicinal plants native to or naturalized in South Africa. Clarkson, 2004.

Coodley, E. L. (1970). In Diagnostic Enzymologia, E.L. Coodley, Ed., pp. 49–50, Lea & Febiger, Philadelphia, Pa, USA, 1970.

Coppens, D. G. and Leal, F. (2003). "Chapter 2: Morphology, Anatomy, and Taxonomy. In Bartholomew, DP; Paull, RE; Rohrbach, KG (eds.). The Pineapple: Botany, Production, and Uses. Wallingford, UK: CABI Publishing. p. 21. ISBN 978-0-85199-503-8. 2003.

Dacie, F. V. and Lewis, S. M. (1995). Practical Haematology. 7th Edition. Churchill Livingstone, Edinburg, 14:12-17.

Ezenyi, I. C. and Salawu, O. A. (2016). Approaches, challenges and prospects of antimalarial drug discovery from plant sources,†in Current Topics in Malaria, R. M. Alfonso, Ed., pp. 187–204, INTECH Open Access, Rijeka, Croatia, 2016.

Farombi, E. O. and Owoeye, O. (2011). Antioxidative and Chemopreventive Properties of Vernonia amygdalina and Garcinia biflavonoid. Int. J. Environ. Res. Public Health, 8:2533-2555.

Gboeloh, L. B., Okon, O. E. and Udoh, S. E. (2014). Antiplasmodial effect of Anthocleista vogeliion albino mice experimentally infected with Plasmodium berghei berghei (NK 65), Journal of Parasitology Research, vol. 2014, Article ID 731906, 6 pages.

Haynes, R. K., Cheu, K. W., N’Da, D., Coghi, P. and Monti D. (2013). Considerations on the mechanism of action of artemisinin antimalarials: part 1 - the ‘carbon radical’ and ‘heme’ hypotheses. Infect Disord Drug Targets, 13(4):217–277.

Ilondu, E. M., Arimoro, F. O. and Sodje A. (2009). The use of aqueous extracts of V. amygdalina Del. in the control of saprolegniasis in Clarias gariepinus, a freshwater fish. African Journal of Biotechnology, 8(24):7130-7132.

Junaid, Q. O., Khaw, L. T., Mahmud, R., Ong, K. C., Lau, Y. L., Borade, P. U., Liew, J. W. K.,

Sivanandam, S., Wong, K. T. and Vythilingam, I. (2017). Pathogenesis of Plasmodium

berghei ANKA infection in the gerbil (Meriones unguiculatus) as an experimental model for

severe malaria. Parasite, 24: 38.

Karabıyıklı, S., Degirmenci, H. and Karapınar, M. (2014). Inhibitory effect of sour orange (Citrus aurantium) juice on Salmonella typhimurium and Listeria monocytogenes, LWT - Food Science and Technology, 55(2): 421–425.

Kato, N., Comer, E. T. and Sakata-Kato, T. Y. (2016). Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature, 538(7624): 344-349.

Khan, S. M., Kroeze, H., Franke-Fayard, B. and Janse, C. J. (2013). Standardization in generating and reporting genetically modified rodent malaria parasites: the RMgmDB database. Methods in Molecular Biology, 923:139–50.

Laryea, M. K. and Borquaye, L. S. (2019). Antimalarial efficacy and toxicological assessment of extracts of some Ghanaian medicinal plants. Journal of Parasitology Research, vol. 2019, Article ID 1630405, 9 pages.

Masaba, S. C. (2000). The antimalarial activity of Vernonia amygdalina Del (Compositae). Trans R Soc Trop Med Hyg, 94: 694-95.

Munaya, C. (2013). Bitter leaf-based extracts cures hepatitis co-inferation and others. The Jordan J Medicinal Plants, 2(6):53-59.

Muregi, F.W., Chhabra, S.C.,Njagi, E.N., Lang’atThoruwa, C.C., Njue, W.M., Orago, A.S.S., Omar, S. A. and Ndiege, I. O. (2003). In vitro antiplasmodial activity of some plants used in Kisii, Kenya against malaria and their chloroquine potentiating effects. J Ethnopharmacol, 84(2): 235–239.

Obisesan, A. and Owoseni, O. (2017). Preference of Medicinal Plants in the Treatment of Malaria Fever in Akure South Local Government Area, Ondo State, Nigeria. Munich Personal RePEc Archive (MPRA), MPRA paper No. 81641, 1-14, 2017.

Oche, O., Habila, N., Ikwebe, J., Vincent, A., Upev, V. A., Okoduwa, S. I. R. and Omiagocho, T. I. (2016). Antimalarial potential of Carica papaya and Vernonia amygdalina in mice infected with Plasmodium berghei. Journal of Tropical Medicine, 2:873-897.

Onaku, L. O., Attama, A. A., Okore, V. C., Tijani, A. Y., Ngene, A. A. and Esimone, C. O. (2011). Anatagonistic antimalarial properties of pawpaw leaf aqueous extract in combination with artesunic acid in Plasmodium berghei-infected mice. J Vector Borne Dis, 48: 96-100.

Panteghini, M. and Bais, R. (2008). Enzymes, in Tietz Fundamentals of Clinical Chemistry, C.A. Burtis, E. R. Ashwood, B.G. Border, and N.W. Tietz, Eds., WB Saunders, Philadelphia, Pa, USA, 2008.

Rappuoli, R. and Aderem, A. A (2011). 2020 vision for vaccines against HIV, tuberculosis and malaria. Nature, 473:463–469.

Sairafianpour, M., Bahreininejad, B., Witt, M., Ziegler, H. L., Jaroszewski, J. W. and Staerk, D. (2003). Terpenoids of Salvia hydrangea: two new, rearranged 20-norabietanes and the effect of oleanolic acid on erythrocyte membranes. Planta Medica, 69(9): 846–850.

Simelane, M., Shonhai, A., Shode, F., Smith, P., Singh, M. and Opoku, A. (2013). Anti-plasmodial activity of some Zulu medicinal plants and of some triterpenes isolated from them. Molecules, 18(10):12313–12323.

Tapsell, L. C., Hemphil, I., Cobiac, L., Patch, C. S., Sullivan, D. R., Fenech, M. and Roodenrys, S. (2006). Health benefits of herbs and species: the past, the present and future. Medicinal Journal of Austria, 1:170-190.

Titanji, V. P. K., Zofou, D. and Ngemenya, M. N. (2008). The antimalarial potential of medicinal plants used for treatment of malaria in Cameroonian folk medicine. African J. Traditional and Alternative Medicines, 5(3): 302-321.

White, N. J. (2018). Anaemia and malaria. Malaria Journal, 17(371): 1–17.

WHO (World Health Organization), (2019). World Malaria Report 2019, World Health Organization, Geneva, Switzerland, 2019.

WHO 2008b, World Malaria Report 2008b, World Health Organization, Geneva, Switzerland, 2008b.

WHO and UNICEF. World Malaria Report. World Health Organization Library Cataloguing-in-Publication Data. www.rollbackmalaria.org/wmr2005/pdf/WMReport_lr.pdf(WHO/ HTM/MAL/2005.1102), 2005.

WHO, 2008a. World Malaria Report 2008a. World Health Organization, Geneva, pp. 7– 15, 99–101.

WHO, World Malaria Report 2010, World Health Organization, Geneva, Switzerland, 2010.

World Health Organization, World Malaria Report 2018, World Health Organization, Geneva, Switzerland, 2018.

World Health Organization. Recommendation for the preparation, characterization and establishment of international and other biological reference standards’. WHO Experimental Committee on biological standardization. Fifty-fifth report. WHO Technical Report: 932, 2004.

Wright, P. J. and Plummer, D. T. (1974). The use of urinary enzyme measurements to detect renal damage caused by nephrotoxic compounds. Biochemical Pharmacology, 23(1):65–73.

Yerbanga, R. S., Lucantoni, L., Lupidi, G., Dori, G. U., Tepongning, N. R., Nikiema, J. B., Esposito, F. and Habluetzel, A. (2012). Antimalarial plant remedies from Burkina Faso: Their potential for prophylactic use. Journal of Ethnopharmacology, 140(2):1-14.

Zeleke, G., Kebebe, D., Mulisa, E., Gashe, F. (2017). In vivo antimalarial activity of the solvent fractions of fruit rind and root of Carica papaya Linn (Caricaceae) against Plasmodium berghei in mice. Journal of Parasitology Research, vol. 2017, Article ID 3121050, 9 pages

Published
2021-06-20
How to Cite
IgbokweU. V., EzeE. D., AdamsM. D., RabiuK. M., EzekielI., AjekaP. O., & OkparaP. O. (2021). ANTI-MALARIAL EFFECTS OF FIVE TRADITIONAL NIGERIAN MEDICINAL PLANT EXTRACTS ON PLASMODIUM BERGHEI-INFECTED RATS. FUDMA JOURNAL OF SCIENCES, 5(2), 7 - 17. https://doi.org/10.33003/fjs-2021-0502-461

Most read articles by the same author(s)