GC–MS ANALYSIS OF Jatropha Curcas SEED OIL AND ETHANOL-DERIVED BIODIESEL PRODUCED USING GREEN-SYNTHESIZED MGO NANOCATALYST
DOI:
https://doi.org/10.33003/fjs-2026-1002-4346Keywords:
Jatropha curcas, Biodiesel, MgO nanocatalyst, Green synthesis, Transesterification, GC–MS, Fatty acid ethyl esters (FAEEs)Abstract
This study reports the extraction and GC–MS characterization of Jatropha curcas seed oil, as well as the analysis of biodiesel produced via ethanolysis using a green-synthesized magnesium oxide (MgO) nanocatalyst.. Seed oil obtained via solvent extraction and evaluated for key physicochemical properties. Biodiesel production was conducted via heterogeneous base-catalyzed transesterification employing plant-mediated MgO nanocatalyst. GC–MS profiling confirmed the successful conversion of triglycerides to fatty acid ethyl esters (FAEEs) and allowed assessment of fuel-relevant quality parameters.. Major ester components identified included oleic (C18:1), linoleic (C18:2), palmitic (C16:0), and stearic (C18:0) esters, with the biodiesel exhibiting the same four FAEEs but in different concentrations, consistent with reported Jatropha fatty acid distributions. The MgO nanocatalyst delivered high catalytic efficiency, enabling substantial reduction or disappearance of triglyceride peaks and the emergence of the expected ester signals in the chromatograms, confirming effective transesterification. Physicochemical properties of both oil and biodiesel such as density, kinematic viscosity, acid value, and flash point, cloud point , pour point, met ASTM D6751 and EN 14214 specifications. Overall, the findings demonstrate the viability of converting non-edible Jatropha curcas oil into high-quality biodiesel using green-synthesized MgO nanoparticles, and reaffirm the reliability of GC–MS for compositional verification and fuel-quality assessment.
References
Aseibichin, C., Wisdom Chukwuemeke Ulakpa, Ikoko Omenogor, Doyah, E., Ayodeji Arnold Olaseinde, Oghenekome Cyril Anakpoha, Keke, M., & Shankar Karuppannan. (2024). Modeling and optimization of transesterification of Jatropha oil to fatty acid methyl ester: application of response surface methodology (CCD) and Taguchi orthogonal method. RSC Advances, 14(17), 11784–11796. https://doi.org/10.1039/d4ra01149j
Bushra Ahmed Alhammad, Jamal, A., Carlucci, C., Muhammad Farhan Saeed, Seleiman, M. F., & Pompelli, M. F. (2023). Non-Conventional Oilseeds: Unlocking the Global Potential for Sustainable Biofuel Production. Catalysts, 13(9), 1263–1263. https://doi.org/10.3390/catal13091263
Kumar, K. J., Daimari, J., Basumatary, S., Mondal, A., & Deka, A. K. (2025). Citrus limetta-peel mediated sheet- like MgO nano-catalyst for the production of biodiesel from jatropha Oil. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-05830-3
Li, Q., Zhu, Y., & Qin, L. (2024). Comparative Study of Camellia oleifera Seed Oil on Chemical Constituents, Antioxidant Activities and Physicochemical Characteristics from Southern China. Journal of Oleo Science, 73(7), 943–952. https://doi.org/10.5650/jos.ess23228
Saman, S., Aamna Balouch, Farah Naz Talpur, Ayaz Ali Memon, Mousavi, B., & Verpoort, F. (2021). Green synthesis of MgO nanocatalyst by using Ziziphus mauritiana leaves and seeds for biodiesel production. 35(5). https://doi.org/10.1002/aoc.6199
Chaudhari, K., Salunke, N., Ateequr Raheman, S. R., Ansari, K. B., Saner, K. A., Suryawanshi, V. K., & Shah, M. (2025). Sustainable MgO Nanocatalyst Additives for Boosting Performance and Mitigating Emissions of Used Cooking Oil Biodiesel–Diesel Blends in Compression Ignition Engines. Catalysts, 15(5), 489. https://doi.org/10.3390/catal15050489
Esmaeili, H., Yeganeh, G., & Esmaeilzadeh, F. (2019). Optimization of biodiesel production from Moringa oleifera seeds oil in the presence of nano-MgO using Taguchi method. International Nano Letters, 9(3), 257–263. https://doi.org/10.1007/s40089-019-0278-2
Elissavet Emmanouilidou, Lazaridou, A., Mitkidou, S., & Kokkinos, N. C. (2024). A comparative study on biodiesel production from edible and non-edible biomasses. Journal of Molecular Structure, 1306, 137870–137870. https://doi.org/10.1016/j.molstruc.2024.137870
Emwas, A.-H. M., Al-Talla, Z. A., Yang, Y., & Kharbatia, N. M. (2015). Gas Chromatography–Mass Spectrometry of Biofluids and Extracts. Methods in Molecular Biology, 1277, 91–112. https://doi.org/10.1007/978-1-4939-2377-9_8
Folayan, A. J., Anawe, P. A. L., Aladejare, A. E., & Ayeni, A. O. (2019). Experimental investigation of the effect of fatty acids configuration, chain length, branching and degree of unsaturation on biodiesel fuel properties obtained from lauric oils, high-oleic and high-linoleic vegetable oil biomass. Energy Reports, 5, 793–806. https://doi.org/10.1016/j.egyr.2019.06.013
Hesham Kisher, Gould, O., & Honeychurch, K. C. (2025). Applications of Gas Chromatography and Gas Chromatography-Mass Spectrometry for the Determination of Illegal Drugs Used in Drink Spiking. Chemosensors, 13(6), 205–205. https://doi.org/10.3390/chemosensors13060205
Kachel, M., Krajewska, M., Małgorzata Stryjecka, Ślusarczyk, L., Arkadiusz Matwijczuk, Rudy, S., & Domin, M. (2023). Comparative Analysis of Phytochemicals and Antioxidant Properties of Borage Oil (Borago officinalis L.) and Milk Thistle (Silybum marianum Gaertn). Applied Sciences, 13(4), 2560–2560. https://doi.org/10.3390/app13042560
Kwakye, J., Eze Ekechukwu, D., & Donatus Ogbu, A. (2024). Characterization of Algal Biomass for Biofuel Production: Techniques and Applications. International Journal of Engineering Research and Development, 20(7), 248–260. https://www.ijerd.com/paper/vol20-issue7/2007248260.pdf?utm_source=chatgpt.com
Milano, J., Ong, M. Y., Tiong, S. K., Ideris, F., Silitonga, A. S., Sebayang, A. H., Tan, C. H., Fattah, I. M. R., Fona, Z., & Hossain, N. (2025). A comparative study of the production of methyl esters from non-edible oils as potential feedstocks: Process optimization and two-step biodiesel characterization. Results in Engineering, 25, 104285. https://doi.org/10.1016/j.rineng.2025.104285
Mahdi, H. I., Ramlee, N. N., da Silva Duarte, J. L., Cheng, Y.-S., Selvasembian, R., Amir, F., de Oliveira, L. H., Wan Azelee, N. I., Meili, L., & Rangasamy, G. (2023). A comprehensive review on nanocatalysts and nanobiocatalysts for biodiesel production in Indonesia, Malaysia, Brazil and USA. Chemosphere, 319, 138003. https://doi.org/10.1016/j.chemosphere.2023.138003
Mhetras, N., & Gokhale, D. (2025). Sustainable biodiesel production: importance of feedstock resources and production methods. RSC Advances, 15(33), 26739–26754. https://doi.org/10.1039/d5ra03084f
Pradana, Y. S., Makertihartha, I. G. B. N., Indarto, A., Prakoso, T., & Soerawidjaja, T. H. (2024). A Review of Biodiesel Cold Flow Properties and Its Improvement Methods: Towards Sustainable Biodiesel Application. Energies, 17(18), 4543. https://doi.org/10.3390/en17184543
Reza Nageubri Balfas, Azhari Muhammad Syam, Muhammad, M., Setiawan, A., & Fithra, H. (2024). Characteristics of Biodiesel Produced from Crude Palm Oil through Non-Alcohol Synthesis Route Using Dimethyl Carbonate and Immobilized Eco-Enzyme Catalyst. Energies, 17(7), 1551–1551. https://doi.org/10.3390/en17071551
Ruatpuia, J. V. L., Halder, G., Vanlalchhandama, M., Lalsangpuii, F., Boddula, R., Al-Qahtani, N., Niju, S., Mathimani, T., & Rokhum, S. L. (2024). Jatropha curcas oil a potential feedstock for biodiesel production: A critical review. Fuel, 370, 131829. https://doi.org/10.1016/j.fuel.2024.131829
Sergii Boichenko, Yakovlieva, A., Stepan Zubenko, & Iryna Shkilniuk. (2025). Physical, Chemical, and Performance Properties of Biodiesel Fuels: A Comparative Study of Lipid-Based Feedstocks. Energies, 18(16), 4274–4274. https://doi.org/10.3390/en18164274
V.S. Shanthini, D. Chitra, & Moorthy, G. (2025). Biodiesel: A comprehensive review of properties, catalyst types, and feedstock sources. Results in Chemistry, 102678–102678. https://doi.org/10.1016/j.rechem.2025.102678
V., A., & Warrier, A. R. (2019). Production of biodiesel from waste cooking oil using MgO nanocatalyst. DAE SOLID STATE PHYSICS SYMPOSIUM 2018. https://doi.org/10.1063/1.5113448
Zhang, Y., Duan, L., & Esmaeili, H. (2022). A review on biodiesel production using various heterogeneous nanocatalysts: Operation mechanisms and performances. Biomass and Bioenergy, 158, 106356. https://doi.org/10.1016/j.biombioe.2022.10635
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2026 Kingsley E. Apuyor, Charles Otobrise, Stanley E. Apuyor, Augustine K. Asiagwu, Andrew O. Onofuevure

This work is licensed under a Creative Commons Attribution 4.0 International License.