ON WHETHER A t- STEINER QUINTUPLE SYSTEM OF BALANCED INCOMPLETE BLOCK DESIGN IS A GROUP, RING OR FIELD ALGEBRA.

Authors

Keywords:

Algebraic Structure, Balanced Designs, Binary Operation, Steiner Quintuple Designs

Abstract

This paper seeks to establish if the t- Steiner quintuple system of balanced incomplete block design (BIBD) is a group, ring or field algebra. A 2- (11, 5, 2) BIBD was constructed with its blocks, incidence matrix and Cayley table shown and the axioms of the algebraic structures of group, ring and field defined.  The t- Steiner quintuple design, represented as,  was tested with the axioms of the algebraic structures. The results showed that a t – Steiner quintuple balanced incomplete block design obeys all the axioms of a group under the additive binary operation but breaks down under the multiplicative binary operation. Results further showed that while the t-Steiner quintuple design satisfied all the axioms of a Ring algebra, hence is a ring, a semi-group, a commutative semi-ring and a commutative ring, but failed to obey the axioms of a Field algebra, hence, it is not a field algebra. 

Dimensions

Akra, U.P., Isaac, A. A., Michael, I. T, Akpan, U.B, and Akpan, S. S (2025): On A-Optimality Designs for solving second order response surface designs Problem: Fudma Journal of Sciences 9 (4), 275 – 279

Akra, U.P., Isaac, A.A., Francis, R.E., Tim, I. T., Akpan, U. B and Akpan,S. S (2025): On D-Optimality Based Approach for solving second order response surface designs Problem; Scientia. Technology, Science and Society 2 (5), 118 -124.

Akra, U. P., Bassey E. E., Umondak, U. J., Etim, A.C., Isaac, A. A., and Akpan, U. A. (2024): On the Selection of Optimal Balanced Incomplete Block Designs Using Different Types of Designs. African Journal of Mathematics and Statistics Studies, 7 (3), 179 -189, (2024). DOI https://doi.org/10.52589/AJMSS-MKIJMNKX.

Akra, U. P., Ntekim, O. E., Robinson, G. S., and Etim, A. C (2023): Evaluation of Some Algebraic Structures in Balanced Incomplete Block Design. African Journal of Mathematics and Statistics Studies, 6 (4), 34 -43.

Akra, U. P., Akpan, S. S., Ugbe, T. A., and Ntekim, O. E (2021). Finite Euclidean Geometry Approach for Constructing Balanced Incomplete Block Design. Asian Journal of Probability and Statistics, 11(4), 47-59.

Barrau, J (1908): On the Combinatory Problem of Steiner.'' K. Akad. Wet. Amsterdam Proc. Sect. Sci. 11, 352-360

Bays, S. and deWeck, E (1935): ``Sur les systèmes de quadruples.'' Comment. Math. Helv. 7, 222-241.

Bose, R. C (1939): On the construction of balanced incomplete block designs, Ann. Eugenics, 353-399,

Bose R.C (1942 a): On some new series of balanced incomplete block designs, Bull. Calcutta Math. Soc., 34, 17-31,

Cayley, A, (1850): ‘On the triadic arrangements of seven and fifteen things’, Philos.Mag. 37, 50–53

Earl Kramer and Dale Menser (1976.): t-Designs on Hypergraphs : Discrete Maths (15) 263 -296

Fisher, R.A. (1940): An examination of the different possible solutions of a problem in incomplete blocks, Ann.Eugen.,10,52-75.

Fitting, F. (1915): Zyklische Lösungen des Steiner'schen Problems. Nieuw. Arch. Wisk. 11, 140-148

Hanani, H. (1961): The existence and construction of balanced incomplete block designs, Ann. Math. Statist. 32, 361-386.

Hanani, H: (1975). Balanced incomplete block designs and related designs, Discrete Math. 11, 255-269

Hannani, H (1954): On Quadruple systems, Canadian J. Math, Vol 6, pp 35

Hanani, H. (1960): ``On Quadruple Systems.'' Canad. J. Math. 12, 145-157

Hanani, H (1972): On balanced incomplete block designs with blocks having five elements. J. Combinatorial Theory 12 , 184–201

Ho, Y.S. and Mendelsohn, N.S (1974): Inequalities for t-designs with repeated blocks, equations Math., A 10, 212-222.

Keevash, Peter (2014): "The existence of designs". arXiv:1401.3665 [math.CO].

Kirkman T.P. (1857): On a problem in combinations. Cambridge and Dublin Math. J. 2 , 191–204, Joy, Moris (2021), Combinatorics,

Michael, I.T, Isaac, A. A.and Etim, A., (2025): Fitting a Normal Distribution to the heights of Akwa Ibom State University students Using Chi-square: Asian Journal of Probability and Statistics, 27 (5), 42-49.

Michael, I.T., Ikpang, N., and Isaac, A. A., (2017): Goodness of fit test, a Chisquared approach to fitting of a normal distribution to the weights of students of Akwa Ibom State University, Nigeria; Asian Journal of Natural and Applied Sciences 6 (4), 107 -113

Moore, B. H (1893): Concerning triple systems. Math. Ann., 43, 271-285

Moore, B. H (1896): Tactical Memoranda I-III, Am. J. Math. 18, 264-303

Plucker J, 1835): ¨ System der analytischen Geometrie: auf neue Betrachtungsweisen gegrundet, ¨ und insbesondere eine ausfuhrliche Theorie der Curven dritter Ordnung enthaltend ¨, (Duncker und Humblot, Berlin,).

Skolem, T (1958): Some remarks on the triple systems of Steiner. Math. Scand. 6, 273–280

Steiner, J., Kombinatorische, Aufgab J. Reine Angew (1853): Math. J., 45, 181-182. (1853).

Wilson, R. M. (1973): The necessary conditions for t-designs are sufficient for something, Utilitas Math. 4:207–215

Published

28-11-2025

How to Cite

ASUQUO ISAAC, A., Akpan, S., & Paulinus Akra, U. (2025). ON WHETHER A t- STEINER QUINTUPLE SYSTEM OF BALANCED INCOMPLETE BLOCK DESIGN IS A GROUP, RING OR FIELD ALGEBRA . FUDMA JOURNAL OF SCIENCES, 9(12), 246-251. https://doi.org/10.33003/fjs-2025-0912-4082

How to Cite

ASUQUO ISAAC, A., Akpan, S., & Paulinus Akra, U. (2025). ON WHETHER A t- STEINER QUINTUPLE SYSTEM OF BALANCED INCOMPLETE BLOCK DESIGN IS A GROUP, RING OR FIELD ALGEBRA . FUDMA JOURNAL OF SCIENCES, 9(12), 246-251. https://doi.org/10.33003/fjs-2025-0912-4082