PERFORMANCE EVALUATION OF TRAINING FUNCTIONS IN NEURAL NETWORKS FOR OPTIMAL BIOMASS ENERGY CONTENT PREDICTION

Authors

  • Aisha Saeed Bello
    Department of Electrical and Computer Engineering, Faculty of Engineering, Baze University, Abuja, Nigeria
  • Usman Alhaji Dodo

Keywords:

Artificial neural networks; biomass; higher heating value; transfer functions; ultimate analysis

Abstract

This study compares the performance of ten training functions in artificial neural networks for predicting the higher heating value (HHV) of biomass using ultimate analysis. A 5-10-1 feed-forward back-propagation neural network architecture was implemented, with data normalized and divided into 70% training and 30% testing. Model accuracy was assessed using the coefficient of determination (R²), mean squared error (MSE), and mean absolute error (MAE). Results obtained showed that the Bayesian Regularization algorithm (trainbr, M3) outperformed other models, achieving an R² of 0.8358, MSE of 0.001432, and MAE of 0.000321 in the training phase, and an R² of 0.9451, MSE of 0.003077, and MAE of 0.001225 in the testing phase. The Levenberg‑Marquardt algorithm (trainlm, M1) followed closely, while the Gradient Descent algorithms (traingd and traingdm) gave the weakest results with low or negative R² values. The findings demonstrate that the trainbr function provides superior predictive reliability for biomass HHV.

Dimensions

Abba, S. I., Linh, N. T. T., Abdullahi, J., Ali, S. I. A., Pham, Q. B., Abdulkadir, R. A., Costache, R., Nam, V. T., & Anh, D. T. (2020). Hybrid machine learning ensemble techniques for modeling dissolved oxygen concentration. IEEE Access, 8(September), 157218–157237. https://doi.org/10.1109/ACCESS.2020.3017743

Abdollahi, S. A., Basem, A., Alizadeh, A., Jasim, D. J., Ahmed, M., Sultan, A. J., Ranjbar, S. F., & Maleki, H. (2024). Combining artificial intelligence and computational fluid dynamics for optimal design of laterally perforated finned heat sinks. Results in Engineering, 21(March), 102002. https://doi.org/10.1016/j.rineng.2024.102002

Adeleke, A. A., Adedigba, A., Adeshina, S. A., Ikubanni, P. P., Lawal, M. S., Olosho, A. I., Yakubu, H. S., Ogedengbe, T. S., Nzerem, P., & Okolie, J. A. (2024). Comparative studies of machine learning models for predicting higher heating values of biomass. Digital Chemical Engineering, 12(100159), 10. https://doi.org/10.1016/j.dche.2024.100159

Agha, D. C., Dodo, U. A., & Hussein, M. A. (2025). Analysis of the Electricity Generation Potentials of Plastic Wastes on a University Campus. Journal of Science Technology and Education, 13(1), 7–15.

Aghel, B., Yahya, S. I., Rezaei, A., & Alobaid, F. (2023). A Dynamic Recurrent Neural Network for Predicting Higher Heating Value of Biomass. International Journal of Molecular Sciences, 24(6), 1–13. https://doi.org/10.3390/ijms24065780

Balsora, H. K., Kartik, A., Dua, V., Joshi, J. B., Kataria, G., Sharma, A., & Chakinala, A. G. (2022). Machine learning approach for the prediction of biomass pyrolysis kinetics from preliminary analysis. Journal of Environmental Chemical Engineering, 10(3), 108025. https://doi.org/10.1016/j.jece.2022.108025

Brandić, I., Antonović, A., Pezo, L., Matin, B., Krička, T., Jurišić, V., Špelić, K., Kontek, M., Kukuruzović, J., Grubor, M., & Matin, A. (2023). Energy Potentials of Agricultural Biomass and the Possibility of Modelling Using RFR and SVM Models. Energies. https://doi.org/10.3390/en16020690

Brandić, I., Pezo, L., Bilandžija, N., Peter, A., Šurić, J., & Voća, N. (2023). Comparison of Different Machine Learning Models for Modelling the Higher Heating Value of Biomass. Mathematics, 11(9), 2098. https://doi.org/10.3390/MATH11092098/S1

Dodo, U. A, Dodo, M. A., Shehu, A. F., & Badamasi, Y. A. (2023). Performance Analysis of Intelligent Computational Algorithms for Biomass Higher Heating Value Prediction. Nigerian Journal of Technological Development, 20(4), 44–52.

Dodo, U. A., Ashigwuike, E. C., & Emechebe, J. N. (2022). Optimization of Standalone Hybrid Power System Incorporating Waste-to-electricity Plant: A Case Study in Nigeria. 2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON), 1–5. https://doi.org/10.1109/NIGERCON54645.2022.9803081

Dodo, U. A., Dodo, M. A., Belgore, A. T., Husein, M. A., Ashigwuike, E. C., Mohammed, A. S., & Abba, S. I. (2024). Comparative study of different training algorithms in backpropagation neural networks for generalized biomass higher heating value prediction. Green Energy and Resources, 2(1), 100060. https://doi.org/10.1016/j.gerr.2024.100060

Güleç, F., Pekaslan, D., Williams, O., & Lester, E. (2022). Predictability of higher heating value of biomass feedstocks via proximate and ultimate analyses – A comprehensive study of artificial neural network applications. Fuel, 320(123944), 1–16. https://doi.org/10.1016/j.fuel.2022.123944

Jayapal, A., Ordonez Morales, F., Ishtiaq, M., Kim, S. Y., & Reddy, N. G. S. (2025). Modeling the Higher Heating Value of Spanish Biomass via Neural Networks and Analytical Equations. Energies, 18(15), 4067. https://doi.org/10.3390/EN18154067/S1

Kujawska, J., Kulisz, M., Oleszczuk, P., & Cel, W. (2023). Improved Prediction of the Higher Heating Value of Biomass Using an Artificial Neural Network Model Based on the Selection of Input Parameters. Energies, 16(10), 1–16. https://doi.org/10.3390/en16104162

Liou, J. L., Liao, K. C., Wen, H. T., & Wu, H. Y. (2024). A study on nitrogen oxide emission prediction in the Taichung thermal power plant using an artificial intelligence (AI) model. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2024.03.120

Msheliza, S. A., & Dodo, U. A. (2025). Performance Comparison of Different Activation Functions in Neural Networks for Biomass Energy Content Prediction. FUDMA Journal of Sciences, 9(4), 285 – 294. https://doi.org/https://doi.org/10.33003/fjs-2025-0904-3493

Nguyen, T. A., Ly, H. B., Mai, H. V. T., & Tran, V. Q. (2021). On the Training Algorithms for Artificial Neural Networks in Predicting the Shear Strength of Deep Beams. Complexity, 2021. https://doi.org/10.1155/2021/5548988

Singh, D., Satija, A., & Hussain, A. (2018). Predicting the calorific value of municipal solid waste of Ghaziabad City, Uttar Pradesh, India, using an artificial neural network approach. In Advances in Intelligent Systems and Computing (Vol. 584, pp. 495–503). https://doi.org/10.1007/978-981-10-5699-4_46

Tahir, J., Ahmad, R., & Tian, Z. (2023). Calorific value prediction models of processed refuse-derived fuel 3 using ultimate analysis. Biofuels. https://doi.org/10.1080/17597269.2022.2116771

Radar Plots Using MSE (a) Training Phase (b) Testing Phase

Published

10-11-2025

How to Cite

Saeed Bello, A., & Alhaji Dodo, U. (2025). PERFORMANCE EVALUATION OF TRAINING FUNCTIONS IN NEURAL NETWORKS FOR OPTIMAL BIOMASS ENERGY CONTENT PREDICTION. FUDMA JOURNAL OF SCIENCES, 9(11), 441 – 448. https://doi.org/10.33003/fjs-2025-0911-4009

How to Cite

Saeed Bello, A., & Alhaji Dodo, U. (2025). PERFORMANCE EVALUATION OF TRAINING FUNCTIONS IN NEURAL NETWORKS FOR OPTIMAL BIOMASS ENERGY CONTENT PREDICTION. FUDMA JOURNAL OF SCIENCES, 9(11), 441 – 448. https://doi.org/10.33003/fjs-2025-0911-4009

Most read articles by the same author(s)