EXPLAINABLE AI FRAMEWORK FOR EARLY AUTISM SPECTRUM DISORDER DETECTION: INTEGRATING ENSEMBLE LEARNING WITH CLINICAL INTERPRETABILITY

Authors

Keywords:

Autism Spectrum Disorder, Ensemble Learning, Explainable Artificial Intelligence (XAI), SHAP (SHapley Additive exPlanations), SMOTE (Synthetic Minority Oversampling Technique)

Abstract

Autism Spectrum Disorder (ASD) diagnosis is often delayed due to subjective assessments and heterogeneous symptoms. Current screening methods lack objectivity and scalability, highlighting the need for computational approaches that balance predictive accuracy with interpretability. To develop and validate a machine learning framework for ASD prediction by integrating ensemble learning, Synthetic Minority Oversampling Technique (SMOTE), and explainable artificial intelligence (XAI) to address class imbalance and ensure diagnostic transparency. Four UCI datasets comprising 3,743 instances across children, adolescents, young adults, and adults with 18 demographic, familial, and AQ-10 features were analysed. SMOTE balanced training data (1,593 per class). Nine classifiers and two ensembles (Voting, Bagging) were evaluated using accuracy, precision, recall, F1-score, and AUC with five-fold cross-validation. Model interpretability was achieved through SHapley Additive exPlanations (SHAP). CatBoost achieved the highest performance (AUC 0.9987, accuracy 0.9853) with balanced precision and recall. XGBoost (AUC 0.9986) and Voting Ensemble (AUC 0.9979) also performed strongly. Cross-validation confirmed stability (SD 0.0023). SHAP highlighted ethnicity (14.18%), age (11.71%), family ASD history (6.97%), and AQ items (A7, A9, A1, A6, A8, A2) as key predictors. The framework combines exceptional predictive accuracy (AUC > 0.99) with transparent interpretability. SHAP-based insights align with clinical knowledge, while robust validation demonstrates strong generalisation, positioning this approach as a promising tool for early ASD screening. This study integrates ensemble learning, class balancing, and XAI into a scalable, objective ASD screening tool that preserves clinical interpretability. With ~99% sensitivity, it reduces missed cases and—by providing transparent, case-level explanations—can accelerate referrals and improve access to early...

Dimensions

Alsbakhi, A., Thabtah, F., and Lu, J. (2025). Autism Data Classification Using AI Algorithms with Rules: Focused Review. Bioengineering, 12(2), 160. https://doi.org/10.3390/bioengineering12020160

Bala, M., Ali, M. H., Satu, Md. S., Hasan, K. F., and Moni, M. A. (2022). Efficient Machine Learning Models for Early Stage Detection of Autism Spectrum Disorder. Algorithms, 15(5), 166. https://doi.org/10.3390/a15050166

Benabdallah, F. Z., Drissi El Maliani, A., Lotfi, D., and El Hassouni, M. (2023). A Convolutional Neural Network-Based Connectivity Enhancement Approach for Autism Spectrum Disorder Detection. Journal of Imaging, 9(6), 110. https://doi.org/10.3390/jimaging9060110

Ben-Sasson, A., Guedalia, J., Nativ, L., Ilan, K., Shaham, M., and Gabis, L. V. (2024). A Prediction Model of Autism Spectrum Diagnosis from Well-Baby Electronic Data Using Machine Learning. Children, 11(4), 429. https://doi.org/10.3390/children11040429

Briguglio, M., Turriziani, L., Currò, A., Gagliano, A., Di Rosa, G., Caccamo, D., Tonacci, A., and Gangemi, S. (2023). A Machine Learning Approach to the Diagnosis of Autism Spectrum Disorder and Multi-Systemic Developmental Disorder Based on Retrospective Data and ADOS-2 Score. Brain Sciences, 13(6). https://doi.org/10.3390/brainsci13060883

Buescher, A. V. S., Cidav, Z., Knapp, M., and Mandell, D. S. (2014). Costs of Autism Spectrum Disorders in the United Kingdom and the United States. JAMA Pediatrics, 168(8), 721. https://doi.org/10.1001/jamapediatrics.2014.210

Cantin-Garside, K. D., Kong, Z., White, S. W., Antezana, L., Kim, S., and Nussbaum, M. A. (2020). Detecting and Classifying Self-injurious Behavior in Autism Spectrum Disorder Using Machine Learning Techniques. Journal of Autism and Developmental Disorders, 50(11), 4039–4052. https://doi.org/10.1007/s10803-020-04463-x

Chawla, P., Rana, S. B., Kaur, H., and Singh, K. (2023). Computer-aided diagnosis of autism spectrum disorder from EEG signals using deep learning with FAWT and multiscale permutation entropy features. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 237(2), 282–294. https://doi.org/10.1177/09544119221141751

Dick, K., Kaczmarek, E., Ducharme, R., Bowie, A. C., Dingwall-Harvey, A. L. J., Howley, H., Hawken, S., Walker, M. C., and Armour, C. M. (2025). Transformer-based deep learning ensemble framework predicts autism spectrum disorder using health administrative and birth registry data. Scientific Reports, 15(1), 11816. https://doi.org/10.1038/s41598-025-90216-8

Eguavoen, V., and Nwelih, E. (2023). Hybrid Soft Computing System for Student Performance Evaluation. Studia Universitatis Babeș-Bolyai Engineering, 3–17. https://doi.org/10.24193/subbeng.2023.1.1

Eguavoen, V. O., Amadin, F. I., and Nwelih, E. (2024). Cardiovascular Disease Risk Prediction For People Living With Hiv Using Ensemble Deep Neural Network. 2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG), 1–9. https://doi.org/10.1109/SEB4SDG60871.2024.10629982

Eguavoen, V. O., and Nwelih, E. (2025). HSML-ITD: HYBRID SUPERVISED MACHINE LEARNING FRAMEWORK FOR INSIDER THREAT DETECTION. Quantum Journal of Engineering, Science and Technology, 6(1), 100–110. https://doi.org/10.55197/qjoest.v6i1.202

Eguavoen, V. O., Olanrewaju, B. S., and Okafor, C. N. (2025). A HYBRID CNN-LSTM AND ADABOOST MODEL FOR CLASSIFYING INTRUSION IN IoT NETWORKS. FUDMA JOURNAL OF SCIENCES, 9(5), 204–212. https://doi.org/10.33003/fjs-2025-0905-3495

Eldin Rashed, A. E., Bahgat, W. M., Ahmed, A., Ahmed Farrag, T., and Mansour Atwa, A. E. (2025). Efficient machine learning models across multiple datasets for autism spectrum disorder diagnoses. Biomedical Signal Processing and Control, 100, 106949. https://doi.org/10.1016/j.bspc.2024.106949

Erkan, U., and Thanh, D. N. H. (2020). Autism Spectrum Disorder Detection with Machine Learning Methods. Current Psychiatry Research and Reviews, 15(4), 297–308. https://doi.org/10.2174/2666082215666191111121115

Farooq, M. S., Tehseen, R., Sabir, M., and Atal, Z. (2023). Detection of autism spectrum disorder (ASD) in children and adults using machine learning. Scientific Reports, 13(1), 9605. https://doi.org/10.1038/s41598-023-35910-1

Jeon, I., Kim, M., So, D., Kim, E. Y., Nam, Y., Kim, S., Shim, S., Kim, J., and Moon, J. (2024). Reliable Autism Spectrum Disorder Diagnosis for Pediatrics Using Machine Learning and Explainable AI. Diagnostics, 14(22), 2504. https://doi.org/10.3390/diagnostics14222504

Jyoti, O., Kibria, H. B., Pear, Z. T., Nahiduzzaman, M., Ahamed, Md. F., Islam, K. R., Kumar, J., and Chowdhury, M. E. H. (2025). A Clinically Interpretable Approach for Early Detection of Autism Using Machine Learning With Explainable AI. IEEE Access, 13, 121512–121532. https://doi.org/10.1109/ACCESS.2025.3586314

Karim, A., Alromema, N., Malebary, S. J., Binzagr, F., Ahmed, A., and Khan, Y. D. (2025). eNSMBL-PASD: Spearheading early autism spectrum disorder detection through advanced genomic computational frameworks utilizing ensemble learning models. DIGITAL HEALTH, 11. https://doi.org/10.1177/20552076241313407

Lundberg, S. M., and Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 2017-December.

Maenner, M. J., Warren, Z., Williams, A. R., Amoakohene, E., Bakian, A. V., Bilder, D. A., Durkin, M. S., Fitzgerald, R. T., Furnier, S. M., Hughes, M. M., Ladd-Acosta, C. M., McArthur, D., Pas, E. T., Salinas, A., Vehorn, A., Williams, S., Esler, A., Grzybowski, A., Hall-Lande, J., … Shaw, K. A. (2023). Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years — Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2020. MMWR. Surveillance Summaries, 72(2), 1–14. https://doi.org/10.15585/mmwr.ss7202a1

Magboo, Ma. S. A., and Magboo, V. P. C. (2022). Explainable AI for Autism Classification in Children (pp. 195–205). https://doi.org/10.1007/978-981-19-3359-2_17

Mahedy Hasan, S. M., Uddin, M. P., Mamun, M. Al, Sharif, M. I., Ulhaq, A., and Krishnamoorthy, G. (2023). A Machine Learning Framework for Early-Stage Detection of Autism Spectrum Disorders. IEEE Access, 11, 15038–15057. https://doi.org/10.1109/ACCESS.2022.3232490

Omar, K. S., Mondal, P., Khan, N. S., Rizvi, Md. R. K., and Islam, M. N. (2019). A Machine Learning Approach to Predict Autism Spectrum Disorder. 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), 1–6. https://doi.org/10.1109/ECACE.2019.8679454

Rajagopalan, S. S., Zhang, Y., Yahia, A., and Tammimies, K. (2024). Machine Learning Prediction of Autism Spectrum Disorder From a Minimal Set of Medical and Background Information. JAMA Network Open, 7(8), e2429229. https://doi.org/10.1001/jamanetworkopen.2024.29229

Shapley, L. S. (1953). A Value for n-person Games. Contributions to the Theory of Games. In Contributions to the Theory of Games II.

Thabtah, F. (2017a). Autism Screening Adult. UCI Machine Learning Repository. https://doi.org/https://doi.org/10.24432/C5F019

Thabtah, F. (2017b). Autistic Spectrum Disorder Screening Data for Adolescent. UCI Machine Learning Repository. https://doi.org/https://doi.org/10.24432/C5V89T

Thabtah, F. (2017c). Autistic Spectrum Disorder Screening Data for Children. UCI Machine Learning Repository. https://doi.org/https://doi.org/10.24432/C5659W

Thabtah, F., Kamalov, F., and Rajab, K. (2018). A new computational intelligence approach to detect autistic features for autism screening. International Journal of Medical Informatics, 117. https://doi.org/10.1016/j.ijmedinf.2018.06.009

Towle, P. O., Visintainer, P. F., O’Sullivan, C., Bryant, N. E., and Busby, S. (2009). Detecting Autism Spectrum Disorder from Early Intervention Charts: Methodology and Preliminary Findings. Journal of Autism and Developmental Disorders, 39(3), 444–452. https://doi.org/10.1007/s10803-008-0643-x

Wingfield, B., Miller, S., Yogarajah, P., Kerr, D., Gardiner, B., Seneviratne, S., Samarasinghe, P., and Coleman, S. (2020). A predictive model for paediatric autism screening. Health Informatics Journal, 26(4), 2538–2553. https://doi.org/10.1177/1460458219887823

Published

08-10-2025

How to Cite

Eguavoen, V. O., Nwelih, E., & Onyenokwe, A. (2025). EXPLAINABLE AI FRAMEWORK FOR EARLY AUTISM SPECTRUM DISORDER DETECTION: INTEGRATING ENSEMBLE LEARNING WITH CLINICAL INTERPRETABILITY. FUDMA JOURNAL OF SCIENCES, 9(10), 209-216. https://doi.org/10.33003/fjs-2025-0910-3915

How to Cite

Eguavoen, V. O., Nwelih, E., & Onyenokwe, A. (2025). EXPLAINABLE AI FRAMEWORK FOR EARLY AUTISM SPECTRUM DISORDER DETECTION: INTEGRATING ENSEMBLE LEARNING WITH CLINICAL INTERPRETABILITY. FUDMA JOURNAL OF SCIENCES, 9(10), 209-216. https://doi.org/10.33003/fjs-2025-0910-3915

Most read articles by the same author(s)