A HYBRID CNN-LSTM AND ADABOOST MODEL FOR CLASSIFYING INTRUSION IN IoT NETWORKS

  • Victor Osasu Eguavoen Wellspring University, Edo State
  • Babatunde Seyi Olanrewaju Wellspring University, Edo State
  • Christian Nnamdi Okafor Wellspring University, Edo State
Keywords: Internet of Things (IoT), Intrusion Detection System (IDS), Hybrid CNN–LSTM, AdaBoost Ensemble Learning, Spatiotemporal Feature Extraction

Abstract

The rapid expansion of the Internet of Things (IoT) has vastly increased device connectivity but also expanded the attack surface. Resource constraints and heterogeneous protocols make traditional intrusion detection systems (IDS) inadequate: signature-based methods miss novel threats, and anomaly detectors yield high false positive rates. We propose a hybrid model integrating CNN, LSTM, and AdaBoost for robust IoT intrusion detection. Our two-stage pipeline begins with a hybrid CNN-LSTM model that automatically extracts spatial and temporal features from preprocessed network traffic. The CNN branch captures local attack patterns, while the LSTM branch models sequential traffic dependencies. We train on a combined UNSW-NB15 and RT-IoT2022 dataset of 205,449 instances with 127 initial features. Rigorous preprocessing (missing-value imputation, one-hot encoding, Z-score normalization, correlation-based elimination) reduces inputs to a 20-feature subset. In the second stage, we extract deep representations from the CNN-LSTM’s penultimate layer and input them to an AdaBoost classifier with decision-stump base learners. This ensemble adaptively weights features to boost accuracy while controlling computation. Experimental results show improved test performance: 99.70% accuracy, 99.90% precision, 99.78% recall, 99.84% F1-score, and a 2.43% false positive rate. These metrics outperform conventional IDS (e.g., [Churcher et al., 2021: 98.2% accuracy; Kumar et al., 2021: 98.5% F1-score]). The model’s computational efficiency during training (64 steps/sec) suggests potential for scalability, though real-world deployment validation remains future work.

References

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Communications Surveys and Tutorials, 17(4). https://doi.org/10.1109/COMST.2015.2444095 DOI: https://doi.org/10.1109/COMST.2015.2444095

Bakhsh, S. A., Khan, M. A., Ahmed, F., Alshehri, M. S., Ali, H., & Ahmad, J. (2023). Enhancing IoT network security through deep learning-powered Intrusion Detection System. Internet of Things (Netherlands), 24. https://doi.org/10.1016/j.iot.2023.100936 DOI: https://doi.org/10.1016/j.iot.2023.100936

Churcher, A., Ullah, R., Ahmad, J., ur Rehman, S., Masood, F., Gogate, M., Alqahtani, F., Nour, B., & Buchanan, W. J. (2021). An Experimental Analysis of Attack Classification Using Machine Learning in IoT Networks. Sensors, 21(2), 446. https://doi.org/10.3390/s21020446 DOI: https://doi.org/10.3390/s21020446

Ding, Y., & Zhai, Y. (2018). Intrusion detection system for NSL-KDD dataset using convolutional neural networks. ACM International Conference Proceeding Series. https://doi.org/10.1145/3297156.3297230 DOI: https://doi.org/10.1145/3297156.3297230

Eguavoen, V. O., Amadin, F. I., & Nwelih, E. (2024). Cardiovascular Disease Risk Prediction For People Living With Hiv Using Ensemble Deep Neural Network. 2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG), 19. https://doi.org/10.1109/SEB4SDG60871.2024.10629982 DOI: https://doi.org/10.1109/SEB4SDG60871.2024.10629982

Eguavoen, V. O., & Nwelih, E. (2024). A Hybrid FCM-PSO-ANFIS Model for Predicting Student Academic Performance. Jurnal Sarjana Teknik Informatika, 12(3), 9198.

Eguavoen, V. O., & Nwelih, E. (2025). HSML-ITD: HYBRID SUPERVISED MACHINE LEARNING FRAMEWORK FOR INSIDER THREAT DETECTION. Quantum Journal of Engineering, Science and Technology, 6(1), 100110. https://doi.org/10.55197/qjoest.v6i1.202 DOI: https://doi.org/10.55197/qjoest.v6i1.202

Gamage, S., & Samarabandu, J. (2020). Deep learning methods in network intrusion detection: A survey and an objective comparison. Journal of Network and Computer Applications, 169. https://doi.org/10.1016/j.jnca.2020.102767 DOI: https://doi.org/10.1016/j.jnca.2020.102767

He, H., Sun, X., He, H., Zhao, G., He, L., & Ren, J. (2019). A Novel Multimodal-Sequential Approach Based on Multi-View Features for Network Intrusion Detection. IEEE Access, 7, 183207183221. https://doi.org/10.1109/ACCESS.2019.2959131 DOI: https://doi.org/10.1109/ACCESS.2019.2959131

Heidari, A., & Jabraeil Jamali, M. A. (2023). Internet of Things intrusion detection systems: a comprehensive review and future directions. Cluster Computing, 26(6). https://doi.org/10.1007/s10586-022-03776-z DOI: https://doi.org/10.1007/s10586-022-03776-z

Ibrahim, A. S., Abbas, A. M., Hassan, A. M. A., Abdel-Rehim, W. M. F., Emam, A., & Mohsen, S. (2023). Design and Implementation of a Pilot Model for IoT Smart Home Networks. IEEE Access, 11, 5970159728. https://doi.org/10.1109/ACCESS.2023.3282095 DOI: https://doi.org/10.1109/ACCESS.2023.3282095

Israni, P. (2019). Breast cancer diagnosis (BCD) model using machine learning. International Journal of Innovative Technology and Exploring Engineering, 8(10). https://doi.org/10.35940/ijitee.J9973.0881019 DOI: https://doi.org/10.35940/ijitee.J9973.0881019

Jiang, W. (2022). Cellular traffic prediction with machine learning: A survey. Expert Systems with Applications, 201, 117163. https://doi.org/10.1016/j.eswa.2022.117163 DOI: https://doi.org/10.1016/j.eswa.2022.117163

Kasongo, S. M. (2023). A deep learning technique for intrusion detection system using a Recurrent Neural Networks based framework. Computer Communications, 199. https://doi.org/10.1016/j.comcom.2022.12.010 DOI: https://doi.org/10.1016/j.comcom.2022.12.010

Korneeva, E., Olinder, N., & Strielkowski, W. (2021). Consumer Attitudes to the Smart Home Technologies and the Internet of Things (IoT). Energies, 14(23), 7913. https://doi.org/10.3390/en14237913 DOI: https://doi.org/10.3390/en14237913

Kumar, P., Gupta, G. P., & Tripathi, R. (2021). An ensemble learning and fog-cloud architecture-driven cyber-attack detection framework for IoMT networks. Computer Communications, 166, 110124. https://doi.org/10.1016/j.comcom.2020.12.003 DOI: https://doi.org/10.1016/j.comcom.2020.12.003

Lawal, M. A., Shaikh, R. A., & Hassan, S. R. (2020). An anomaly mitigation framework for iot using fog computing. Electronics (Switzerland), 9(10). https://doi.org/10.3390/electronics9101565 DOI: https://doi.org/10.3390/electronics9101565

Li, Y., Xu, Y., Liu, Z., Hou, H., Zheng, Y., Xin, Y., Zhao, Y., & Cui, L. (2020). Robust detection for network intrusion of industrial IoT based on multi-CNN fusion. Measurement: Journal of the International Measurement Confederation, 154. https://doi.org/10.1016/j.measurement.2019.107450 DOI: https://doi.org/10.1016/j.measurement.2019.107450

Liu, H., & Lang, B. (2019). Machine learning and deep learning methods for intrusion detection systems: A survey. In Applied Sciences (Switzerland) (Vol. 9, Issue 20). https://doi.org/10.3390/app9204396 DOI: https://doi.org/10.3390/app9204396

Lo, W. W., Layeghy, S., Sarhan, M., Gallagher, M., & Portmann, M. (2022). E-GraphSAGE: A Graph Neural Network based Intrusion Detection System for IoT. NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium, 19. https://doi.org/10.1109/NOMS54207.2022.9789878 DOI: https://doi.org/10.1109/NOMS54207.2022.9789878

Makhdoom, I., Abolhasan, M., Lipman, J., Liu, R. P., & Ni, W. (2019). Anatomy of Threats to the Internet of Things. IEEE Communications Surveys and Tutorials, 21(2). https://doi.org/10.1109/COMST.2018.2874978 DOI: https://doi.org/10.1109/COMST.2018.2874978

Moustafa, N., Koroniotis, N., Keshk, M., Zomaya, A. Y., & Tari, Z. (2023). Explainable Intrusion Detection for Cyber Defences in the Internet of Things: Opportunities and Solutions. IEEE Communications Surveys and Tutorials, 25(3). https://doi.org/10.1109/COMST.2023.3280465 DOI: https://doi.org/10.1109/COMST.2023.3280465

Moustafa, N., Turnbull, B., & Choo, K.-K. R. (2019). An Ensemble Intrusion Detection Technique Based on Proposed Statistical Flow Features for Protecting Network Traffic of Internet of Things. IEEE Internet of Things Journal, 6(3), 48154830. https://doi.org/10.1109/JIOT.2018.2871719 DOI: https://doi.org/10.1109/JIOT.2018.2871719

Mukhtar, B. I., Elsayed, M. S., Jurcut, A. D., & Azer, M. A. (2023). IoT Vulnerabilities and Attacks: SILEX Malware Case Study. Symmetry, 15(11). https://doi.org/10.3390/sym15111978 DOI: https://doi.org/10.3390/sym15111978

Obamehinti, A. S., & Eguavoen, V. O. (2022). A literature review of land title with the aim of maximising the benefits of Blockchain technology in the management of Land Title in Nigeria. Studia Universitatis Babe-Bolyai Engineering, 124135. https://doi.org/10.24193/subbeng.2022.1.12 DOI: https://doi.org/10.24193/subbeng.2022.1.12

Olanrewaju, B. S., & Osunade, O. (2018). Design of a Mathematical Model for Spectrum Utilisation in Cognitive Radio. International Journal of Computer Applications, 180(19), 2732. https://doi.org/10.5120/ijca2018916436 DOI: https://doi.org/10.5120/ijca2018916436

Oliveira, N., Praa, I., Maia, E., & Sousa, O. (2021). Intelligent cyber attack detection and classification for network-based intrusion detection systems. Applied Sciences (Switzerland), 11(4). https://doi.org/10.3390/app11041674 DOI: https://doi.org/10.3390/app11041674

Santhosh Kumar, S. V. N., Selvi, M., & Kannan, A. (2023). A Comprehensive Survey on Machine LearningBased Intrusion Detection Systems for Secure Communication in Internet of Things. Computational Intelligence and Neuroscience, 2023(1). https://doi.org/10.1155/2023/8981988 DOI: https://doi.org/10.1155/2023/8981988

Sarhan, M., Layeghy, S., Moustafa, N., & Portmann, M. (2020). NetFlow Datasets for Machine Learning-based Network Intrusion Detection Systems. https://doi.org/10.1007/978-3-030-72802-1_9 DOI: https://doi.org/10.1007/978-3-030-72802-1_9

Sharmila, B. S., & Nagapadma, R. (2023). Quantized autoencoder (QAE) intrusion detection system for anomaly detection in resource-constrained IoT devices using RT-IoT2022 dataset. Cybersecurity, 6(1), 41. https://doi.org/10.1186/s42400-023-00178-5 DOI: https://doi.org/10.1186/s42400-023-00178-5

Silivery, A. K., Rao Kovvur, R. M., Solleti, R., Kumar, L. S., & Madhu, B. (2023). A model for multi-attack classification to improve intrusion detection performance using deep learning approaches. Measurement: Sensors, 30. https://doi.org/10.1016/j.measen.2023.100924 DOI: https://doi.org/10.1016/j.measen.2023.100924

Singh, N. J., Hoque, N., Singh, Kh. R., & Bhattacharyya, D. K. (2024). Botnetbased IoT network traffic analysis using deep learning. SECURITY AND PRIVACY, 7(2). https://doi.org/10.1002/spy2.355 DOI: https://doi.org/10.1002/spy2.355

Stellios, I., Kotzanikolaou, P., Psarakis, M., Alcaraz, C., & Lopez, J. (2018). A survey of iot-enabled cyberattacks: Assessing attack paths to critical infrastructures and services. In IEEE Communications Surveys and Tutorials (Vol. 20, Issue 4). https://doi.org/10.1109/COMST.2018.2855563 DOI: https://doi.org/10.1109/COMST.2018.2855563

Tiwari, S., Bhushan, A., Singh, A. K., & Yadav, R. K. (2024). Unleashing the Potential of IoT Integration for Energy Optimization in Smart Homes. 2024 3rd International Conference on Power Electronics and IoT Applications in Renewable Energy and Its Control (PARC), 8285. https://doi.org/10.1109/PARC59193.2024.10486624 DOI: https://doi.org/10.1109/PARC59193.2024.10486624

Xiao, L., Wan, X., Lu, X., Zhang, Y., & Wu, D. (2018). IoT Security Techniques Based on Machine Learning: How Do IoT Devices Use AI to Enhance Security? IEEE Signal Processing Magazine, 35(5). https://doi.org/10.1109/MSP.2018.2825478 DOI: https://doi.org/10.1109/MSP.2018.2825478

Xiao, Q., Liu, J., Wang, Q., Jiang, Z., Wang, X., & Yao, Y. (2020). Towards network anomaly detection using graph embedding. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12140 LNCS. https://doi.org/10.1007/978-3-030-50423-6_12 DOI: https://doi.org/10.1007/978-3-030-50423-6_12

Zarpelo, B. B., Miani, R. S., Kawakani, C. T., & de Alvarenga, S. C. (2017). A survey of intrusion detection in Internet of Things. In Journal of Network and Computer Applications (Vol. 84). https://doi.org/10.1016/j.jnca.2017.02.009 DOI: https://doi.org/10.1016/j.jnca.2017.02.009

Zhang, Y., Qin, Y., Li, D., & Yang, Y. (2022). A risk prediction model mediated by genes of APOD/APOC1/SQLE associates with prognosis in cervical cancer. BMC Womens Health, 22(1). https://doi.org/10.1186/s12905-022-02083-4 DOI: https://doi.org/10.1186/s12905-022-02083-4

Published
2025-05-31
How to Cite
Eguavoen, V. O., Olanrewaju, B. S., & Okafor, C. N. (2025). A HYBRID CNN-LSTM AND ADABOOST MODEL FOR CLASSIFYING INTRUSION IN IoT NETWORKS. FUDMA JOURNAL OF SCIENCES, 9(5), 204 - 212. https://doi.org/10.33003/fjs-2025-0905-3495