EVALUATION OF THE EFFICIENCY OF AZADIRACHTA INDICA (NEEM) LEAF POWDER AND ITS ACTIVATED CARBON IN THE ADSORPTION OF BENZENE AND TOLUENE FROM SIMULATED REFINERY WASTE WATER
Abstract
This study assessed the efficiency of Azadirachta indica (Neem) leaf powder (NLP) and its activated carbon (NLAC) as potential adsorbents for the extraction of benzene and toluene from simulated refinery wastewater. The objective is to evaluate the capacity of these materials to enhance the quality of industrial effluents and assist developing nations in attaining the Sustainable Development Goals (SDGs), specifically Goal 6 (Clean water and Sanitation), Goal 12 (Responsible Consumption and Production), and Goal 15 (Life on Land). Azadirachta indica leaf powder and its activated carbon were prepared by air-drying Azadirachta indica leaf in the shade at room temperature (25 °C) for 72 hr, followed by oven drying at 105 °C for 30 min until they were crisp, and chemical activation with phosphoric acid. The adsorbents were assessed by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) analysis. The FTIR analysis identified the functional groups in the adsorbent that are accountable for the adsorption property. The surface presents a fibrous composition including irregular macropores and enlarged cavities that may facilitate the diffusion of adsorbate molecules through the macropores. The batch adsorption process was studied under numerous conditions, encompassing varying concentrations, pH, contact time, adsorbent amount, and temperature. The findings indicated that activated carbon derived from Neem leaf, possessing a surface area of 427.154 m²/g, exhibited substantial adsorption of benzene and toluene, attaining removal efficiency of 74 % and 81 % respectively, under optimal conditions of (pH 10, contact time 75 min, adsorbent dosage 1 g,...
References
Abdul Rasheed, K., Mohammed, D., Mohd, G.A., Shahnaz, M., and Abdulaziz, M.A. (2024). A review of pre- and post-surface-modified neem (Azadirachta indica) biomass adsorbent: Surface functionalization mechanism and application. Chemosphere, Volume 351,141180, ISSN 0045-6535, https://doi.org/10.1016/j.chemosphere.2024.141180. DOI: https://doi.org/10.1016/j.chemosphere.2024.141180
Abeer, S.M., and Talib, M.A. (2024). Evaluation of adsorption treatment method for removal of phenol and acetone from industrial wastewater. Desalination and Water Treatment. 317 (2024) 100091. https://doi.org/10.1016/j.dwt.2024.100091 DOI: https://doi.org/10.1016/j.dwt.2024.100091
Abel, A.U., Habor, R.G., and Oseribho, I.O. (2020). Adsorption Studies of Oil Spill Cleanup using Cocunut Coir Activated Carbon (CCAC). Journal of Applied Chemistry.13:42-56. http://www.sciencepublishinggroup.com/j//aff
Abuhasel, K.A., Kchaou, M., Alquraish, M., Munusamy, Y., and Jeng, Y.T. (2021). Oily Wastewater Treatment: Overview of Conventional and Modern Methods, Challenges, and Future Opportunities. Water. https://doi.org/10.3390/w13070980 DOI: https://doi.org/10.3390/w13070980
Ahmad, R., and Mirza, A. (2018). Adsorption of Pb(II) and Cu(II) by Alginate-Au-Mica Bionanocomposite: Kinetic, Isotherm and Thermodynamic Studies. Process Safety and Environmental Protection, 117, 125139. DOI: 10.1016/j.psep.2018.04.010 DOI: https://doi.org/10.1016/j.psep.2017.03.020
Al-Asheh, S., Bagheri, M., and Aidan, A., (2021). Membrane bioreactor for wastewater treatment: a review. Case Stud. Chem. Environ. Eng. 4, 100109 https://doi.org/ 10.1016/J.CSCEE.2021.100109. DOI: https://doi.org/10.1016/j.cscee.2021.100109
Al-Ghouti, M.A., and Sweleh, A.O. (2019). Optimizing textile dye removal by activated carbon prepared from olive stones, Environ. Technol. Innov. https://doi.org/10.1016/j.eti.2019.100488. DOI: https://doi.org/10.1016/j.eti.2019.100488
Alprol, A.E., Khedawy, M., Ashour, M., Thabet, W.M., (2023a). Arthrospira platensis nanoparticle-based approach for efficient removal of methyl orange dye from aqueous solutions: isotherm, kinetic, and thermodynamic analysis. Biomass Convers. Bioref. 1e18, https://doi.org//10.1007/s13399-023-04844-z. DOI: https://doi.org/10.1007/s13399-023-04844-z
Arslan, D.S., Ertap, H., Senol, Z.M., El Messaoudi, N., and Mehmeti, V. (2024). Preparation of polyacrylamide titanium dioxide hybrid nanocomposite by direct polymerization and its applicability in removing crystal violet from aqueous solution. J. Polym. Environ. 32, 573587. https://doi.org/10.1007/S10924-023-03004-8. DOI: https://doi.org/10.1007/s10924-023-03004-8
Ashour, M., Alprol, A.E., Heneash, A.M., Saleh, H., Abualnaja, K.M., Alhashmialameer, D., and Mansour, A.T. (2021). Ammonia bioremediation from aquaculture wastewater effluents using arthrospira platensis niof17/003: impact of biodiesel residue and potential of ammonia-loaded biomass as rotifer feed. Materials 14, 5460. DOI: https://doi.org/10.3390/ma14185460
Atmani F., M. M. Kaci, N. YeddouMezenner, A. Soukeur, I. Akkari, J. A. Navio, (2022). Insights into the physicochemical properties of Sugar Scum as a sustainable biosorbent derived from sugar refinery waste for efficient cationic dye removal. https://doi.org/10.1007/s13399-022-02646-3 DOI: https://doi.org/10.1007/s13399-022-02646-3
Bhomick PC, Supong A, Sinha D. (2017). Organic Pollutants in Water and its Remediation Using Biowaste Activated Carbon as Greener Adsorbent. Int J Hydro 1(3): 00017. DOI: 10.15406/ijh.2017.01.00017 DOI: https://doi.org/10.15406/ijh.2017.01.00017
Chakrabarty, S., and Sarma, H.P. (2012). Defluoridation of contaminated drinking water using Neem charcoal adsorbent: kinetics and equilibrium studies. Int J Chem. Tech. Res. 4(2): 511516
Chen Y., C. Zou, M. Mastalerz, S. Hu, C. Gasaway, X. Tao, (2015). Applications of microfourier transform infrared spectroscopy (FTIR) in the geological sciencesA review, Int. J. Mol. Sci. 16 3022330250, https://doi.org/10.3390/ijms161226227. DOI: https://doi.org/10.3390/ijms161226227
Cigeroglu, Z., Kazan-Kaya, E.S., El Messaoudi, N., Fernine, Y., Americo-Pinheiro, J.H.P., and Jada, A. (2023). Remediation of tetracycline from aqueous solution through adsorption on g-C3N4-ZnO-BaTiO3 nanocomposite: optimization, modeling, and theoretical calculation. J. Mol. Liq. 369, 120866 https://doi.org/10.1016/J. MOLLIQ.2022.120866. DOI: https://doi.org/10.1016/j.molliq.2022.120866
Da Silva, A.F.V., da Silva, J., Vicente, R., Ambrosi, A., Zin, G., Di Luccio, M., and de Oliveira, J.V. (2023). Recent advances in surface modification using polydopamine for the development of photocatalytic membranes for oily wastewater treatment. J. Water Process Eng. 53, 103743 https://doi.org/10.1016/j.jwpe.2023.103743. DOI: https://doi.org/10.1016/j.jwpe.2023.103743
Daffalla, S. B., Mukhtar, H., Shaharun, M. S., and Hassaballa, A. A. (2022). Fixed-Bed Adsorption of Phenol onto Microporous Activated Carbon Set from Rice Husk Using Chemical Activation. Applied Sciences, 12(9), 4354. https://doi.org/10.3390/app12094354 DOI: https://doi.org/10.3390/app12094354
Das, R., Anupam, M., Ishita, S., Kunal, R., and Binay, K.D. (2020). Synthesis of potential bioadsorbent from Indian Neem leaves (Azadirachta indica) and its optimization for malachite green dye removal from industrial wastes using response surface methodology: kinetics, isotherms and thermodynamic studies. Applied Water Science 10:117 https://doi.org/10.1007/s13201-020-01184-5 DOI: https://doi.org/10.1007/s13201-020-01184-5
Datye A., A. DeLaRiva, (2023). Scanning Electron Microscopy (SEM), Springer Handbooks, pp. 359380, https://doi.org/10.1007/978-3-031-07125-6_18. DOI: https://doi.org/10.1007/978-3-031-07125-6_18
Daverey, A., Pandey, D., Verma, P., Verma, S., Shah, V., Dutta, K., and Arunachalam, K. (2019). Recent advances in energy efficient biological treatment of municipal wastewater. Bioresour. Technol. Rep. 7, 100252 https://doi.org/10.1016/J. BITEB.2019.100252. DOI: https://doi.org/10.1016/j.biteb.2019.100252
Daware, G.B., Gogate, P.R. (2021). Removal of pyridine using ultrasound assisted and conventional batch adsorption based on tea waste residue as biosorbent. Envir onTech Innov; 21:101292. https://doi.org/10.1016/j.eti.2020.101292. DOI: https://doi.org/10.1016/j.eti.2020.101292
Dewi, R., Shamsuddin, N., Bakar, M.S.A., Santos, J.H., Bilad, M.R., and Lim, L.H. (2021). Progress in emerging contaminants removal by adsorption/membrane filtration-based technologies: a review. Indones. J. Sci. Technol. 6, 577618. DOI: https://doi.org/10.17509/ijost.v6i3.39271
Ehsan Mirzaee, and Sartaj, M. (2022). Synthesis and evaluation of recoverable activated carbon/Fe3O4 composites for removal of polycyclic aromatic hydrocarbons from aqueous solution. Environmental Technology & Innovation, 25, 102174. https://doi.org/10.1016/j.eti.2021.102174 DOI: https://doi.org/10.1016/j.eti.2021.102174
El Khomri, M., El Messaoudi, N., Dbik, A., Bentahar, S., Lacherai, A., Chegini, Z.G., and Bouich, A. (2022b). Removal of Congo red from aqueous solution in single and binary mixture systems using Argan nutshell wood. Pigment Resin Technol. 51, 477488. https://doi.org/10.1108/PRT-04-2021-0045. DOI: https://doi.org/10.1108/PRT-04-2021-0045
El Messaoudi, N., El Mouden, A., Fernine, Y., El Khomri, M., Bouich, A., Faska, N., Cigeroglu, Z., Americo-Pinheiro, J.H.P., Jada, A., and Lacherai, A. (2023b). Green synthesis of Ag2O nanoparticles using Punica granatum leaf extract for sulfamethoxazole antibiotic adsorption: characterization, experimental study, modeling, and DFT calculation. Environ. Sci. Pollut. Res. 30, 8135281369. https://doi.org/10.1007/S11356-022-21554-7. DOI: https://doi.org/10.21203/rs.3.rs-1642752/v1
El Mouden, A., El Guerraf, A., El Messaoudi, N., Haounati, R., Ait El Fakir, A., and Lacherai, A. (2022). Date stone functionalized with 3-aminopropyltriethoxysilane as a potential biosorbent for heavy metal ions removal from aqueous solution. Chem. Africa 5, 745759. https://doi.org/10.1007/S42250-022-00350-3. DOI: https://doi.org/10.1007/s42250-022-00350-3
Fiyadh, S.S., Alardhi, S.M., Al Omar, M., Aljumaily, M.M., Al Saadi, M.A., Fayaed, S.S., Ahmed, S.N., Salman, A.D., Abdalsalm, A.H., Jabbar, N.M., and El-Shafi, A. (2023). A comprehensive review on modelling the adsorption process for heavy metal removal from waste water using artificial neural network technique. Heliyon 9, e15455. https://doi.org/10.1016/J.HELIYON.2023.E15455. DOI: https://doi.org/10.1016/j.heliyon.2023.e15455
Foo, K. Y., and Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 210. https://doi.org/10.1016/j.cej.2009.09.013 DOI: https://doi.org/10.1016/j.cej.2009.09.013
Himanshu Patel (2020). Batch and continuous fixed bed adsorption of heavy metals removal using activated charcoal from neem (Azadirachta indica) leaf powder. Scientific Reports 10:16895 https://doi.org/10.1038/s41598-020-72583-6
Husaini, M., and Ibrahim, M.B. (2019). Thermodynamic and Kinetic study on the corrosion of aluminium in hydrochloric acid using benzaldehyde as corrosion inhibitor. International Journal of Engineering and Manufacturing. 9(6):53-64. DOI: https://doi.org/10.5815/ijem.2019.06.05
Husaini, M., Usman, B., and Ibrahim, M.B. (2023). Adsorption Studies of Methylene Blue using Activated Carbon Derived from Sweet Detar Seed Shell. ChemSearch Journal 14(1):21 32. http://www.ajol.info/index.php/csj
Husaini, M., Usman, B., Ibrahim M.A. and Ibrahim, M.B. (2020). Effect of Aniline as Corrosion inhibitor on the Corrosion of Aluminium in Hydrochloric Acid Solution. Res. J. Chem. Environ., 24(2): 99-106.
Ibrahim, M.B. and Sani, S. (2015) Neem (Azadirachta indica) Leaves for Removal of Organic Pollutants. Journal of Geoscience and Environment Protection, 3, 1-9. http://dx.doi.org/10.4236/gep.2015.32001 DOI: https://doi.org/10.4236/gep.2015.32001
Irshad, Z., Bibi, I., Ghafoor, A., Majid, F., Kamal, S., Ezzine, S., Elqahtani, Z.M., Alwadai, N., El Messaoudi, N., and Iqbal, M. (2022). Ni doped Sr Fe nanoparticles synthesized via micro-emulsion route and photocatalytic activity evaluation for the degradation of crystal violet under visible light irradiation. Results Phys. 42, 106006 https://doi.org/10.1016/J.RINP.2022.106006. DOI: https://doi.org/10.1016/j.rinp.2022.106006
Jawad Ali H., Ahmed Saud Abdulhameed and Mohd Sufri Mastuli (2020). Acid-factionalized biomass material for methylene blue dye removal: a comprehensive adsorption and mechanism study, Journal of Taibah University for Science, 14:1, 305-313, DOI:10.1080/16583655.2020.1736767 DOI: https://doi.org/10.1080/16583655.2020.1736767
Joel I.B, Len H.V.L, Rheo B.L. (2024). The Feasibility of Using ATR-FTIR Spectroscopy Combined with one Class Support Vector Machine in Screening Turmeric Powders, Vibrational Spectroscopy, Vol 130, 2024, 103646, ISSN 0924-2031 DOI: https://doi.org/10.1016/j.vibspec.2023.103646
Khader, E.H., Khudhur, R.H., Mohammed, T.J., Mahdy O.S., Anaam A. Sabri,
Khader, E.H., Mohammed, T.J., Mirghaffari, N., Salman, A.D., Juzsakova, T., and Abdullah, T. A. (2023). Removal of organic pollutants from produced water by batch adsorption treatment. Clean Technologies and Environmental Policy, 24(2), 713720. https://doi.org/10.1007/s10098-021-02159-z DOI: https://doi.org/10.1007/s10098-021-02159-z
Khan S.A., S.B. Khan, L.U. Khan, A. Farooq, K. Akhtar, A.M. Asiri, (2018). Fourier transform infrared spectroscopy: fundamentals and application in functional groups and nanomaterials characterization, Handb. Mater. Charact. P.317344, https://doi.org/10.1007/978-3-319-92955-2_9. DOI: https://doi.org/10.1007/978-3-319-92955-2_9
Khosrowshahi, M.S., Abdol, M.A., Mashhadimoslem, H., Khakpour, E., Emrooz, H.B.M., Sadeghzadeh, S., and Ghaemi, A. (2022). The role of surface chemistry on CO2 adsorption in biomass-derived porous carbons by experimental results and molecular dynamics simulations. Sci Rep.12(1):8917. doi: 10.1038/s41598-022-12596-5. PMID: 35618757; PMCID: PMC9135713. DOI: https://doi.org/10.1038/s41598-022-12596-5
Kumari S., Annamareddy S.H.K., (2020). Environ. Dev. Sustain. 22, 2967
Lin, L., Yang, H., and Xu, X. (2022). Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Frontiers in Environmental Science, 10. doi:10.3389/fenvs.2022.880246 DOI: https://doi.org/10.3389/fenvs.2022.880246
Mahdi, A.E., Ali, N.S., Kalash, K.R., Salih, I.K., Abdulrahman, M.A., and Albayati, T.M. (2023). Investigation of equilibrium, isotherm, and mechanism for the efficient removal of 3-nitroaniline dye from wastewater using mesoporous material MCM-48. Prog Color Col Coat;16:38798. https://doi.org/10.30509/pccc.2023.167111.1205.
Marathe, S.D. (2022). Rapid Urban Growth: Problems and Solutions https://doi.org/10.13140/RG.2.1.3262.0400.
Maryanti, R.; Rahayu, N.I.; Muktiarni, M.; Al Husaeni, D.F.; Hufad, A.; Sunardi, S.; and Nandiyanto, A.B.D. (2022). Sustainable development goals (SDGs) in science education: Definition, literature review, and bibliometric analysis. Journal of Engineering Science and Technology, 17, 161-181
Melaphi, K., Olawumi, O.S., Geoffrey, S.S., Stephan, W., and Kapil, M. (2023). Adsorptive removal of BTEX compounds from wastewater using activated carbon derived from macadamia nut shells. Water SA 49(1) 3645. https://doi.org/10.17159/wsa/2023.v49.i1.3970 DOI: https://doi.org/10.17159/wsa/2023.v49.i1.3970
Mordhiya, B., Sharma, R., Meena Parmeshwar, L., Meena, P., and Selwal, C. (2023). Development of Novel Nanoadsorbent from Azadirachta indica (Neem) Dead Bark for Removal of Organic Contaminants from Polluted Water: Kinetic, Isotherm and Thermodynamic Study. Research square. DOI: https://doi.org/10.21203/rs.3.rs-2877102/v1 DOI: https://doi.org/10.21203/rs.3.rs-2877102/v1
Moruwou, F., Edegbe, U. D., and Madojemu, G. O. (2022). Removal of Total Hydrocarbon from Oilfield Produced Water using Activated Carbon prepared from Coconut Shells. Journal of Applied Sciences and Environmental Management, 26(11), 18611868. https://doi.org/10.4314/jasem.v26i11.19 DOI: https://doi.org/10.4314/jasem.v26i11.19
Musa Husaini, Bishir Usman and Muhammad Bashir Ibrahim, (2023). Adsorption Studies of Methylene Blue using Activated Carbon Derived from Sweet Detar Seed Shell. Chem Search Journal 14(1): 21 32, June, 2023 http://www.ajol.info/index.php/csj
Naga, A.O.A.E., Saied, M., Seham, A., Shaban, S., and Kady, F.Y.E. (2019). Fast removal of diclofenac sodium from aqueous solution using sugar cane bagasse-derived activated carbon. Journal of Molecular Liquids 285: 9-19 https:doi.org/10.1016/j.molliq.2019.04.062 DOI: https://doi.org/10.1016/j.molliq.2019.04.062
Nandiyanto, A.B.D., Al husaeni, D.F., Ragadhita, R., Fiandini, M., Maryanti, R., and Al husaeni, D.N. (2023). Computational Calculation of Adsorption Isotherm Characteristics of Carbon Microparticles Prepared from Mango Seed Waste to Support Sustainable Development Goals (SDGS). Journal of Engineering Science and Technology.Vol. 18:2.913 930.
Nedjai Radhia, Nassereldeen Kabbashi, Md zahangir alam, Maan alkhatib, Amina tahreen and Abdullah al mamun. (2024). Adsorption performance of fixed-bed columns for the removal of phenol using baobab fruit shell based activated carbon. IIUM Engineering Journal, Vol. 25, No. 1, 2024. https://doi.org/10.31436/iiumej.v25i1.2932 DOI: https://doi.org/10.31436/iiumej.v25i1.2932
Noora A. Raheem, Najwa S. Majeed, Zahraa Al Timimi (2024). Phenol Adsorption from Simulated Wastewater Using Activated Spent Tea Leaves. Iraqi Journal of Chemical and Petroleum Engineering Vol. 25 No. 1 (March 2024) 95 102 https://doi.org/10.31699/IJCPE.2024.1.9 DOI: https://doi.org/10.31699/IJCPE.2024.1.9
Ojediran J.O., Dada, A.O., Aniyi, S.O., David, R.O., Adewumi, A.D. (2021). Mechanism and isotherm modeling of effective adsorption of malachite green as endocrine disruptive dye using Acid Functionalized Maize Cob (AFMC). Scientific Reports, 11(1), 21498. DOI: https://doi.org/10.1038/s41598-021-00993-1
Osagie, E., and Owabor, C.N. (2015) Adsorption of Benzene in Batch System in Natural Clay and Sandy Soil. Advances in Chemical Engineering and Science, 5, 352-361. http://dx.doi.org/10.4236/aces.2015.53037 DOI: https://doi.org/10.4236/aces.2015.53037
Otitolaiye, V.O. (2022). Impacts of petroleum refinery emissions on the health and safety of local residents. Journal of Air Pollution and Health 7(1):69-80 DOI: https://doi.org/10.18502/japh.v7i1.8921
Pan, M., Li, Q., and Xu, L. (2020). Efficient adsorption of perfluoroalkyl acids by the quaternized hierarchically porous polystyrene-divinylbenzene. Chem Eng J. 386:123990. https://doi.org/10.1016/j.cej.2019.123990. DOI: https://doi.org/10.1016/j.cej.2019.123990
Patel, H. (2020). Batch and continuous fixed bed adsorption of heavy metals removal using activated charcoal from neem (Azadirachta indica) leaf powder. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-72583-6 DOI: https://doi.org/10.1038/s41598-020-72583-6
Pathania, D., Sharma, S., and Singh, P. (2017). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast, Arabian Journal of Chemistry 10:S1445-S1451, https://doi.org/10.1016/j.arabjc.2013.04.021 DOI: https://doi.org/10.1016/j.arabjc.2013.04.021
Pona, H.T., Xiaoli, D., Ayantobo, O.O., and Narh Daniel, T. (2021). Environmental health situation in Nigeria: current status and future needs. Heliyon, 7(3), e06330. https://doi.org/10.1016/j.heliyon.2021.e06330 DOI: https://doi.org/10.1016/j.heliyon.2021.e06330
Pust M.L.C., Optical filters - technology and applications, Portable Spectrosc. Spectrom. (2021) 147177, https://doi.org/10.1002/9781119636489.ch7. DOI: https://doi.org/10.1002/9781119636489.ch7
Qadir, M., Drechsel, P., Jimnez Cisneros, B., Kim, Y., Pramanik, A., Mehta, P., and Olaniyan, O. (2020). Global and Regional Potential of Wastewater as a Water, Nutrient and Energy Source. Nat. Resour. Forum, 44, 4051. DOI: https://doi.org/10.1111/1477-8947.12187
Ragadhita, R., Amalliya, A., Nuryandi, S., Fiandini, M., Nandiyanto, A.B.D., Hufad, A., Mudzakir, A., Nugraha, W.C., Farobie, O., Istadi, I., and Al- Obaidi, A.S.M. (2023). Sustainable Carbon-Based Biosorbent Particles from Papaya Seed Waste: Preparation and Adsorption isotherm, Mor. J. Chem., 14(2), 395-410. Doi: https://doi.org/10.48317/IMIST. PRSM/morjchem-v11i2.38263
Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G., & Sing, K. S. W. (2013). Adsorption by powders and porous solids: Principles, methodology and applications (2nd ed.). Academic Press.
S. Kumari, S.H.K. Annamareddy, (2020). Environ. Dev. Sustain. 22, 2967 DOI: https://doi.org/10.1007/s10668-019-00330-7
Sadare O., Ayeni A., Daramola M. (2020). Performance Evaluation of Green Adsorbent (neem Leaf Powder) for Desulfurization of Petroleum Distillate, Chemical Engineering Transactions, 80, 361-366 DOI:10.3303/CET2080061Sadare, O.O and Daramola, M.O. (2019). Adsorptive removal of dibenzothiophene from petroleum distillates using pomegranate leaf (Punica granatum) powder as a greener adsorbent. Chem. Eng. Comm. 206 (3) 333345. https://doi.org/10.1080/00986445.2018.1488691 DOI: https://doi.org/10.1080/00986445.2018.1488691
Sadare, O.O., Augustine, O.A., and Michael, O.D. (2022). Evaluation of adsorption and kinetics of neem leaf powder (Azadirachta indica) as a biosorbent for desulfurization of dibenzothiophene (DBT) from synthetic diesel. Journal of Saudi Chemical Society. 26, 101433. https://doi.org/10.1016/j.jscs.2022.101433 DOI: https://doi.org/10.1016/j.jscs.2022.101433
Sadiq, Q., Ezeamaka, C. K., Daful, M., Butu, A. W., Adewuyi, T. O., Ajibuah, J., and Mustafa, I. A. (2022). Assessment of water quality in River Kaduna, Nigeria. Journal of Research in Forestry, Wildlife & Environment, 14(2), 154 165
Saravanan A. M, Raiya Ali Al Hashmi, Anna Jesil, Achuthan M., Santosh Walke, Shabib Al Rashdi, Noura Al Balushi and Shah Jahan (2022). Experimental scrutinization on the treatment of synthetic wastewater using neem bark and date palm fiber as an adsorbent Rasayan J. Chem., Special Issue, http://doi.org/10.31788/RJC.2022.1558134 DOI: https://doi.org/10.31788/RJC.2022.1558134
Sethu, V, Andresen, J and Cloke, M (2009). Biosorption of Cu (II) from wastewater using Azadirachta indica (neem leaves), Journal of Environmental Research and Development, vol. 3, no. 3, pp. 614-620.
Singh, B.J., Chakraborty, A., and Sehgal, R. (2023). A systematic review of industrial wastewater management: evaluating challenges and enablers. J. Environ. Manag. 348, 119230 https://doi.org/10.1016/J.JENVMAN.2023.119230. DOI: https://doi.org/10.1016/j.jenvman.2023.119230
Sinha P., A. Datar, C. Jeong, X. Deng, Y.G. Chung, L.C. Lin, (2019). Surface area determination of porous materials using the Brunauer-Emmett-Teller (BET) method: limitations and improvements, J. Phys. Chem. C. 123 DOI: https://doi.org/10.1021/acs.jpcc.9b02116
Taki Estapraq Ameen, Sami D. Salman (2024). Removal of Diesel Oil from Aqueous Solution Using Agro-Waste Activated Carbon Synthesized by Chemical and Microwave Activation. Journal of Ecological Engineering, 25(5), 1028. ISSN 22998993, License CC-BY 4.0 https://doi.org/10.12911/22998993/185321 DOI: https://doi.org/10.12911/22998993/185321
Unuabonah, E.I., Omorogie, M.O., and Oladoja, N.A. (2019). Modeling in adsorption: Fundamentals and applicationsn in Composite nano adsorbent, 85-118. https://doi.org/10.1016/B978-0-12814132-8.00005-8. DOI: https://doi.org/10.1016/B978-0-12-814132-8.00005-8
Wang J., J. Zhang, L. Han, J. Wang, L. Zhu, H. Zeng, (2021). Graphene-based materials for adsorptive removal of pollutants from water and underlying interaction mechanism, Adv. Colloid Interface Sci. 289 https://doi.org/10.1016/j.cis.2021.102360. DOI: https://doi.org/10.1016/j.cis.2021.102360
Yagmur, E., Gokce, Y., and Aktas, Z. (2021). Novel activated carbons from biomass for CO capture: Synthesis, characterization, and adsorption properties. Journal of Environmental Chemical Engineering, 9(4), 105333.
https://doi.org/10.1016/j.jece.2021.105333 DOI: https://doi.org/10.1016/j.jece.2021.105333
Zhang, K., Wang, Q., Zhou, Y., Gao, J., Li, C., and Jiang, X. (2020). A low-cost crosslinked polystyrene derived from environmental wastes for adsorption of phenolic compounds from aqueous solution. J Mol Liq. 314:113641. https://doi.org/10.1016/j.molliq.2020.113641. DOI: https://doi.org/10.1016/j.molliq.2020.113641
Ziati M., S. Khemili, and A. Metali. (2023). Organic pollutants removal from petroleum refinery effluents through adsorption using anthracite coal: Kinetics, Isotherms, and Thermodynamic Modeling. DOI: https://doi.org/10.24200/sci.2023.62631.7943
Copyright (c) 2025 FUDMA JOURNAL OF SCIENCES

This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences