HIGH SALT DIET REDUCES OVARIAN, UTERINE WEIGHT, AND FERTILITY INDEX IN FEMALE WISTAR RATS

  • Olufunke Onaadepo Department of Physiology, Faculty of Basic Medical Sciences, University of Abuja, Abuja
  • Victor Omere Idahosa Department of Physiology, Faculty of Basic Medical Sciences, University of Abuja, Abuja
  • Roqeeb Busayo Babawale 2Department of Physiology, Faculty of Basic Medical Sciences, University of Ilesa, Ilesa, Osun State, Nigeria.
  • Nachamada Solomon Emmanuel Department of Human Physiology, Faculty of Basic Medical Sciences, College of Medical Sciences, Ahmadu Bello University, Zaria. Kaduna State, Nigeria.
  • Victor Olorunshola Kolawole Department of Physiology, Faculty of Basic Medical Sciences, University of Abuja, Abuja
Keywords: High salt diet, Uterine weight, Ovarian weight, Fertility index

Abstract

Female reproductive health is highly sensitive to hormonal and environmental factors, and diet is a significant modifiable factor influencing reproductive outcomes. This study aimed to investigate the impact of high-salt diets on the weight and size of the uterus and ovaries in female albino Wistar rats. Forty-four (44) female albino Wistar rats weighing between 200 and 250 g were randomly assigned to four groups comprising 11 albino Wistar rats each. The designated control group was fed with a non-high salt diet ad libitum; the other groups were fed 2.5 %, 3.5 %, and 4.5 % NaCl diets, respectively. All albino Wistar rats in groups 2, 3, and 4 were fed the experimental diet for 6 weeks. The male albino Wistar rats were housed separately before mating and allowed access to rat chow and water. The study showed that a high salt diet resulted in a significant decrease in the weight of the ovaries, the weight of the uterus and the fertility index. These findings show the importance of dietary regulation in preserving reproductive function and mitigating the adverse effects of metabolic disturbances. Thus, a high salt diet could be detrimental to the female reproductive system.

References

Abdelnour, S. A., Abd El-Hack, M. E., Noreldin, A. E., Batiha, G. E., Beshbishy, A. M., Ohran, H., Khafaga, A. F., Othman, S. I., Allam, A. A., & Swelum, A. A. (2020). High salt diet affects the reproductive health in animals: An overview. Animals, 10(4), 590. https://doi.org/10.3390/ani10040590 DOI: https://doi.org/10.3390/ani10040590

Asiwe, J. N., Asiwe, N., & Onuh, J. E. (2021). The effect of high dietary salt consumption on renal function in streptozotocin-induced diabetic male Wistar rats. International Journal of Nutrition Science, 6(4), 201207.

Cacere, A. R., Santos, A. A., Souza, E. P., & Oliveira, A. G. (2021). Effects of sodium chloride on uterine morphology in female rats: Role of inflammatory markers. Journal of Reproductive Research, 58(2), 8595.

Chhabra, V., Meenakshi, S., Maity, S., Saini, D., Saini, M., Murti, K., & Kumar, N. (2025). Impact of fluoride exposure on reproductive health: Insights into molecular mechanisms and health implications. Reproductive Toxicology, 135, 108907. https://doi.org/10.1016/j.reprotox.2025.108907 DOI: https://doi.org/10.1016/j.reprotox.2025.108907

Chi, Y., Yue, R., Lv, Y., Li, H., & Liao, W. (2024). The dietary phytochemical index and its relation to polycystic ovary syndrome: A casecontrol study. Journal of Ovarian Research, 17(1), 228. https://doi.org/10.1186/s13048-024-01540-y DOI: https://doi.org/10.1186/s13048-024-01540-y

Fitzgerald, T., Gupta, A., & Sampson, M. (2020). Impact of high-sodium diets on the hypothalamic-pituitary-gonadal axis in female rats: A mechanistic review. Endocrine Journal, 67(6), 487497.

Gaska, E., Wrzeciska, M., Kowalczyk, A., & Araujo, J. P. (2022). Reproductive consequences of electrolyte disturbances in domestic animals. Biology, 11(7), 1006. https://doi.org/10.3390/biology11071006 DOI: https://doi.org/10.3390/biology11071006

He, F. J., Li, J., & MacGregor, G. A. (2013). Effect of longer-term modest salt reduction on blood pressure: Cochrane systematic review and meta-analysis. The American Journal of Hypertension, 26(5), 607611. DOI: https://doi.org/10.1002/14651858.CD004937.pub2

Hou, E., Yan, J., Zhu, X., & Qiao, J. (2022). High-salt diet contributes to excess oxidative stress and abnormal metabolism in mouse ovaries. Biomedical Chromatography, 36(12), e5500. https://doi.org/10.1002/bmc.5500 DOI: https://doi.org/10.1002/bmc.5500

Hu, Y., Yang, X., & Lin, Z. (2021). High sodium intake impairs ovarian function and induces oxidative stress in female rats. Journal of Endocrinology, 248(3), 261272. https://doi.org/10.1530/JOE-20-0355

Khaw, K. T., Bingham, S., Welch, A., & Day, N. (2008). Dietary sodium and potassium intake and risk of cardiovascular disease: A prospective study of 21,000 men and women in the EPIC-Norfolk cohort. European Heart Journal, 29(6), 757763. https://doi.org/10.1093/eurheartj/ehm551 DOI: https://doi.org/10.1093/eurheartj/ehm551

Klein, H. J., & Bayne, K. A. (2007). Establishing a culture of care, conscience, and responsibility: Addressing the improvement of scientific discovery and animal welfare through science-based performance standards. ILAR Journal, 48(1), 311. DOI: https://doi.org/10.1093/ilar.48.1.3

Kudesia, R., Alexander, M., Gulati, M., Kennard, A., & Tollefson, M. (2021). Dietary approaches to womens sexual and reproductive health. American Journal of Lifestyle Medicine, 15(4), 414. https://doi.org/10.1177/15598276211007113 DOI: https://doi.org/10.1177/15598276211007113

Li, F., Zhang, H., & Wu, Y. (2020). Dietary salt intake and its implications for fertility index in female rats. Journal of Reproductive Biology, 37(4), 564572.

Li, M., Wang, J., & Liu, Q. (2019). High-salt diet, renal function, and reproductive health: A review of recent findings. Reproductive Toxicology, 88, 2332. https://doi.org/10.1016/j.reprotox.2019.01.012

Muhammed Saeed, A. A., Noreen, S., Awlqadr, F. H., Farooq, M. I., Qadeer, M., Rai, N., Farag, H. A., & Saeed, M. N. (2025). Nutritional and herbal interventions for polycystic ovary syndrome (PCOS): A comprehensive review of dietary approaches, macronutrient impact, and herbal medicine in management. Journal of Health, Population and Nutrition, 44(1), 143. https://doi.org/10.1186/s41043-025-00899-y DOI: https://doi.org/10.1186/s41043-025-00899-y

Peivasteh-roudsari, L., Barzegar-bafrouei, R., Sharifi, K. A., Azimisalim, S., Karami, M., Abedinzadeh, S., Asadinezhad, S., Tajdar-oranj, B., Mahdavi, V., Alizadeh, A. M., Sadighara, P., Ferrante, M., Conti, G. O., Aliyeva, A., & Mousavi Khaneghah, A. (2023). Origin, dietary exposure, and toxicity of endocrine-disrupting food chemical contaminants: A comprehensive review. Heliyon, 9(7), e18140. https://doi.org/10.1016/j.heliyon.2023.e18140 DOI: https://doi.org/10.1016/j.heliyon.2023.e18140

Saleh, H. A., Saad, D. A., Abou-Bakr, D. A., El-Khateb, L., & Ahmed, M. A. (2020). Effect of salt loading on metabolic changes in ovariectomized rats. Al-Azhar Medical Journal, 49(1), 283304. https://doi.org/10.21608/amj.2020.67555 DOI: https://doi.org/10.21608/amj.2020.67555

Silvestris, E., Lovero, D., & Palmirotta, R. (2019). Nutrition and female fertility: An interdependent correlation. Frontiers in Endocrinology, 10, 346. https://doi.org/10.3389/fendo.2019.00346 DOI: https://doi.org/10.3389/fendo.2019.00346

Teeling, J., Felton, L., Deacon, R., Cunningham, C., Rawlins, J., & Perry, V. (2007). Sub-pyrogenic systemic inflammation impacts on brain and behavior, independent of cytokines. Brain Behavior and Immunity, 21(6), 836850. https://doi.org/10.1016/j.bbi.2007.01.012 DOI: https://doi.org/10.1016/j.bbi.2007.01.012

Tian, Z., Zhang, X., Yao, G., Jin, J., Zhang, T., Sun, C., Wang, Z., & Zhang, Q. (2024). Intestinal flora and pregnancy complications: Current insights and future prospects. iMeta, 3(2). https://doi.org/10.1002/imt2.167 DOI: https://doi.org/10.1002/imt2.167

Vassalle, C., Maffei, S., & Fiorentino, G. (2015). Impact of dietary salt on oxidative stress and cardiovascular health: Implications for female reproductive organs. Oxidative Medicine and Cellular Longevity, 2015, 295871. https://doi.org/10.1155/2015/295871

Wang, G., Yeung, C., Zhang, J., Hu, X., Ye, Y., Yang, Y., Li, J., Lee, K. K. H., Yang, X., & Wang, L. (2015). High salt intake negatively impacts ovarian follicle development. Annals of Anatomy - Anatomischer Anzeiger, 200, 7987. https://doi.org/10.1016/j.aanat.2015.02.009 DOI: https://doi.org/10.1016/j.aanat.2015.02.009

Wang, Y., Zhang, S., & Yang, Q. (2017). The role of oxidative stress and inflammation in high-salt-induced reproductive dysfunction in female rats. Free Radical Biology & Medicine, 108, 96103.

Wenger, S. (2012). Anesthesia and analgesia in rabbits and rodents. Journal of Exotic Pet Medicine, 21(1), 716. https://doi.org/10.1053/j.jepm.2011.11.010 DOI: https://doi.org/10.1053/j.jepm.2011.11.010

Wube, T., Haim, A., & Fares, F. (2008). Effect of increased dietary salinity on the reproductive status and energy intake of xeric and mesic populations of the spiny mouse, Acomys. Physiology & Behavior, 96(1), 122127. DOI: https://doi.org/10.1016/j.physbeh.2008.09.006

Yang, L., Zuo, X., & Zheng, L. (2018). Alterations in ovarian morphology and function due to excessive salt consumption in rats. Reproductive Toxicology, 80, 113121. https://doi.org/10.1016/j.reprotox.2018.07.012 DOI: https://doi.org/10.1016/j.reprotox.2018.07.012

Yao, X., Liu, W., Xie, Y., Xi, M., & Xiao, L. (2023). Fertility loss: Negative effects of environmental toxicants on oogenesis. Frontiers in Physiology, 14, 1219045. https://doi.org/10.3389/fphys.2023.1219045 DOI: https://doi.org/10.3389/fphys.2023.1219045

Published
2025-07-16
How to Cite
Onaadepo, O., Idahosa, V. O., Babawale, R. B., Emmanuel, N. S., & Kolawole, V. O. (2025). HIGH SALT DIET REDUCES OVARIAN, UTERINE WEIGHT, AND FERTILITY INDEX IN FEMALE WISTAR RATS. FUDMA JOURNAL OF SCIENCES, 9(7), 137 - 141. https://doi.org/10.33003/fjs-2025-0907-3671