EXPLORING THE ANTIMICROBIAL POTENTIALS OF SPIDER SILK FROM PHOLCUS PHALANGIOIDES FUESSLIN, 1775 AND HIPPASA SP. SIMON, 1885

Authors

  • Jamila Ahmed
    Ahmadu Bello University, Zaria
  • Abdullahi Bala Alhassan
    Ahmadu Bello University, Zaria
  • K. Ibrahim
    Ahmadu Bello University Zaria
  • H. Y. Isah
    Ahmadu Bello University Zaria

Keywords:

Spider, Venoms, Hippasa sp., Pholcus Phalangioides, Antimicrobial assay

Abstract

As the efficacy of traditional antimicrobial therapies diminishes, the need for novel, safe, and effective antimicrobial agents has become increasingly urgent. An unconventional yet promising source of such agents is spider silk. Traditionally recognized for its remarkable mechanical attributes, including high tensile strength and elasticity, spider silk has recently garnered attention for its potential biomedical applications, particularly its intrinsic antimicrobial activity. This study investigated the antimicrobial potential of silk from two spider species: Pholcus phalangioides and Hippasa sp. Silk samples were collected, extracted using methanol and formic acid, and subsequently filtered. The resulting extracts were assessed for antimicrobial activity using both disc diffusion and well diffusion assays against a panel of pathogenic microorganisms, including Candida albicans, Circinotrichum sp., Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae. The methanolic extract of P. phalangioides silk demonstrated significant antimicrobial activity (P< 0.05), with the most considerable effect observed against Circinotrichum sp. In contrast, the formic acid extract of Hippasa sp. displayed greater antimicrobial efficacy compared to its methanolic counterpart, with more substantial activity against bacterial strains than fungal pathogens. Notably, inhibition zones observed in the disc diffusion assays were generally larger than those measured in the well diffusion assays. These findings suggest that spider silk from P. phalangioides and Hippasa sp. harbors bioactive compounds, potentially antimicrobial peptides that exhibit significant inhibitory effects against pathogenic microbes. The results underscore the potential of spider silk as a novel reservoir for developing next-generation antimicrobial agents.

Dimensions

Babczynska, S. Sulowicz, E. Talik, M. Hermyt, A. Bednarek, M. & Sawadro, A. M. (2019). Sterile capsule-egg cocoon covering constitutes an antibacterial barrier for spider Parasteatoda tepidariorum embryos.Physiological and Biochemical Zoology, 92, 115-124. https://doi.org/10.1086/701390

Baihaqi-Othman, A., Saad, M., Yusoff, N.& Abdullah, S. (2019). In vitro antimicrobial activity of betel, Piper betle leaf extract against Vibrio alginolyticus isolated from Asian sea bass, Lates calcarifer. Journal of Applied Biology & Biotechnology, 6(04),. 46-48. https://doi.org/10.7324/JABB.2018.60409.

Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005

Branković, M., Zivic, F., Grujovic, N., Stojadinovic, I., Milenkovic, S., &Kotorcevic, N. (2024). Review of spider silk applications in biomedical and tissue engineering. Biomimetics (Basel), 11;9(3), 169. https://doi.org/10.3390/biomimetics9030169

Cheesbrough, M. (2006). District Laboratory Practice in Tropical Countries (2nd ed.). Cambridge University Press.

Ciriminna, R., Fidalgo, A., Meneguzzo, F., Presentato, A., Scurria, A., Nuzzo, D., Alduina, R.,Ilharco, l. M. & Pagliaro, M. (2020). Pectin: A long-neglected broad-spectrum antibacterial. ChemMedChem 15(23), 2228–2235. https://doi.org/10.1002/cmdc.202000518

Cowen, L. E., Sanglard, D., Howard, S. J., Rogers, P. D., & Perlin, D. S. (2014). Mechanisms of antifungal drug resistance. Cold Spring Harbor Perspectives in Medicine, 5(7), a019752. https://doi.org/10.1101/cshperspect.a019752

Deshmukh, U. S. & Pansare, A.S. (2019). Antimicrobial activity of the web of spider, Stegodyphus sarasinorum, on E. coli and S. aureus. Bioscience Biotechnology and Research Communication 12, 787-789. http://dx.doi.org/10.21786/bbrc/12.3/35

Dippenaar-Schoeman, A. S. & Jocqué, R. (1997). African Spiders: An Identification Manual. Plant Protection Research Institute Handbook, 9, 392 pp.

Gram (2019). The burden of antimicrobial resistance (AMR) in Nigeria. https://www.healthdata.org/sites/default/files/2023-09/Nigeria.pdf

Goy, R. C., Morais, S. T. B.& Assis, O. B. G. (2016). Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Revista Brasileira de Farmacognosia,26(1), 122–127. https://doi.org/10.1016/j.bjp.2015.09.010.

Kazemipoor, M., Wan Mohamed Radzi, C. W. J., Begum, K., & Yaze, I. (2012). Screening of antibacterial activity of lactic acid bacteria isolated from fermented vegetables against foodborne pathogens. Archives des Sciences, 65(6), 192–199. https://doi.org/10.48550/arXiv.1206.6366.

Kiseleva, A., Nestor, G., Östman, J. R., Kriuchkova, A., Savin, A., Krivoshapkin, P., Krivoshapkina, E., Seisenbaeva, G. A. & Kessler, V. G. (2021). Modulating surface properties of the Linothele fallax spider web by solvent treatment. Biomacromolecules, 13;22(12), 4945-4955. https://doi.org/10.1021/acs.biomac.1c00787.

Kub, T. N. T., Ab Manaf, N. A., & Che Ibrahim, A. S. (2021). Comparison of well diffusion, disc diffusion, and broth dilution methods for antimicrobial activity of Andrographis paniculata herbal gel against acne-associated pathogen. Malaysian Journal of Microbiology, 17(1), 90–96. https://doi.org/10.1021161/mjm.200722

Kumar, A. H. (2020). Molecular docking of natural compounds from Tulsi (Ocimum Sanctum) and neem (Azadirachta indica) against SARS-CoV-2 protein targets. BEMS Report 6(1), 11–13. https://doi.org/10.5530/bems.6.1.4.

Lammel, A. S., Hu, X., Park, S. H., Kaplan, D. L. & Scheibel, T. R. (2010). Controlling silk fibroin particle features for drug delivery. Biomaterials, 31, 4583–4591. https://doi.org/10.1016/j.biomaterials.2010.02.024.

Larsson, D. G. J., & Flach, C. F. (2022). Antibiotic resistance in the environment. Nature Reviews Microbiology, 20(5), 257–269. https://doi.org/10.1038/s41579-021-00649-x

Lee, B., Shin, M. K, Yoo, J. S, Jang, W. & Sung J-S. (2022). Identifying novel antimicrobial peptides from venom gland of spider Pardosa astrigera by deep multi-task learning. Frontiers in Microbiology 13, 971503. https://doi.org/10.3389/fmicb.2022.971503.

Magiorakos, A. P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T., & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

Makover, V., Ronen, Z., Lubin, Y., & Khalaila, I. (2019). Eggshell spheres protect brown widow spider (Latrodectus geometricus) eggs from bacterial infection. Journal of the Royal Society Interface, 16,20180581. https://doi.org/10.1098/rsif.2018.0581

Morehead, M. S., & Scarbrough, C. (2018). Emergence of global antibiotic resistance. Primary Care: Clinics in Office Practice, 45, 467–484. https://doi.org/10.1016/j.pop.2018.05.006.

Newman, J., & Newman, C. (1995). Oh what a tangled web – the medicinal uses of spider silk. International Journal of Dermatology, 34(4), 290–292.https://doi.org/10.1111/j.1365-4362.1995.tb01600.x.

Nikaido, H. (2009). Multidrug resistance in bacteria. Annual Review of Biochemistry, 78, 119–146. https://doi.org/10.1146/annurev.biochem.78.082907.145923

Nurkhaliza, F., Risana, M. Z., Pubasari, A., Priatmoko, S., Prastya, M. E., & Andreani, A. S. (2024). Comparative study of well diffusion and disc diffusion methods to investigate the antibacterial properties of silver nanoparticles synthesized from Curcuma longa extracts. E3S Web of Conferences, 503, 09003. https://doi.org/10.1051/e3sconf/202450309003

Ojah, E. O., Oladele, E. O., & Chukwuemeka, P. (2021). Phytochemical and antibacterial properties of root extracts from Portulaca oleracea Linn. (Purslane) utilised in the management of diseases in Nigeria. Journal of Medicinal Plants for Economic Development, 5(1), Article a103. https://doi.org/10.4102/jomped.v5i1.103

Ouertani, A., Mollet, C., Boughanmi, Y., de Pomyers, H., Mosbah, A., Ouzari, H.-I., Cherif, A., Gigmes, D., Maresca, M., & Mabrouk, K. (2024). Screening of antimicrobial activity in venom: Exploring key parameters. Toxicon, 251, 108135. https://doi.org/10.1016/j.toxicon.2024.108135

Perfect, J. R. (2017). The antifungal pipeline: A reality check. Nature Reviews Drug Discovery, 16(9), 603–616. https://doi.org/10.1038/nrd.2017.46

Phartale, N. N., Kadam, T. A., Bhosale, H. J., Karale, M. A. & Garimella, G. (2019). Exploring the antimicrobial potential of Pardosa brevivulva silk.TheJournal of Basicand Applied Zoology, 80, 31. https://doi.org/10.1186/s41936-019-0102-6

Rex, J. H., Pfaller, M. A., Walsh, T. J., Chaturvedi, V., Espinel-Ingroff, A., Ghannoum, M. A., & Rinaldi, M. G. (2001). Antifungal susceptibility testing: Practical aspects and current challenges. Clinical Microbiology Reviews, 14(4), 643–658. https://doi.org/10.1128/CMR.14.4.643-658.2001

Romer, L. & Scheibel, T. (2008). The elaborate structure of spider silk. Structure and function of a natural high performance fiber. Prion, 2, 154-161. https://doi.org/10.4161/pri.2.4.7490

Roozbahani, H., Asmar, M., Ghaemi, N., & Issazadeh, K. Z. (2014). Evaluation of antimicrobial activity of spider silk Pholcus phalangioides against two bacterial pathogens in food borne. International Journal of Advanced Biological and Biomedical Research, 2(7), 2197–2199.

Stan, D., Enciu, A. M., Mateescu, A. L, Ion, A. C, Brezeanu, A. C, Stan, D. & Tanase C. (2021). Natural compounds with antimicrobial and antiviral effects and nanocarriers used for their transportation. Frontiers in Pharmacology12:723233. https://doi.org/10.3389/fphar.2021.723233.

Tahir, H. M., Khanum, Z. K., Zaheer, A., & Samiullah, K. (2017). Spider silk: An excellent biomaterial for medical science and industry. Punjab University Journal of Zoology, 32(1), 143–154.

Thakur, K., & Juneja, L. R. (2021). Advances in natural antimicrobial compounds and their applications in food preservation. In Natural Antimicrobials for Food Preservation. Elsevier.

Tsiareshyna, M., Wang, T. H., Lin, Y. S. Piorkowski, D., Huang, Y. T. S., Huang, Y. L. Chao, W. T. Chang, Y. J, Liao, C. P. Wang, P. H. & Tso, I. M.(2024). Bacteria inhabiting spider webs enhance host silk extensibility. Scientific Report, 14, 11011. https://doi.org/10.1038/s41598-024-61723-x

Ugboko, H. U., Nwinyi, O. C., Oranusi, S. U., Fatoki, T. H., & Omonhinmin, C. A. (2020). Antimicrobial importance of medicinal plants in Nigeria. The Scientific World Journal, 2020, 7059323. https://doi.org/10.1155/2020/7059323

Vollrath, F. (2000). Strength and structure of spiders' silks. Journal of Biotechnology, 74, 67-83. https://doi.org//10.1016/s1389-0352(00)00006-4

World Health Organization (2017). WHO publishes list of bacteria for which new antibiotics are urgently needed (fact sheet). https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed

Wright, S., & Goodacre, S. L. (2012). Evidence for antimicrobial activity associated with common house spider silk. BMC Research Notes, 5, 326. https://doi.org/10.1186/1756-0500-5-326

Zailani, S. B., Shuiabu, Y. U., Adamu, M. B., Mudathir, Q., Zakari, N. D., Lawal, A. S., & Muhammad, L. (2024). Assessment of antimicrobial activities of some selected medicinal plants used in the treatment of skin and wound infections in Bauchi Town, Bauchi State, Nigeria. European Journal of Medicinal Plants, 35(4), 42–56. https://doi.org/10.9734/ejmp/2024/v35i41197

Zortéa, A.D.A.& Fischer, M.L. (2009). Padrão de descarte de presas e avaliação da atividade antimicrobiana de constituintes da teia de Loxosceles intermedia Mello-Leitão, 1934 e Loxosceles laeta (Nicolet, 1849) (Araneae; Sicariidae).Revista Brasileira deZoociências, 1, 47-53.

Relationship between spider species as influenced by methods and zones of inhibition

Published

01-11-2025

How to Cite

Ahmed, J., Alhassan, A. B., Ibrahim, K., & Isah, H. Y. (2025). EXPLORING THE ANTIMICROBIAL POTENTIALS OF SPIDER SILK FROM PHOLCUS PHALANGIOIDES FUESSLIN, 1775 AND HIPPASA SP. SIMON, 1885. FUDMA JOURNAL OF SCIENCES, 9(10), 384-390. https://doi.org/10.33003/fjs-2025-0910-3604

How to Cite

Ahmed, J., Alhassan, A. B., Ibrahim, K., & Isah, H. Y. (2025). EXPLORING THE ANTIMICROBIAL POTENTIALS OF SPIDER SILK FROM PHOLCUS PHALANGIOIDES FUESSLIN, 1775 AND HIPPASA SP. SIMON, 1885. FUDMA JOURNAL OF SCIENCES, 9(10), 384-390. https://doi.org/10.33003/fjs-2025-0910-3604

Most read articles by the same author(s)