ANTIMALARIAL AND ANTIOXIDANT EFFECTS OF Persea Americana (avocado) LEAF EXTRACT IN Plasmodium berghei-INFECTED MICE

  • George O. Eidangbe Ambrose Alli University
Keywords: Antimalaria, Antioxidant, Persea Americana, Oxidative stress

Abstract

The emergence of drug-resistant Plasmodium strains necessitates the search for alternative treatment strategies, including plant-derived bioactive compounds with antimalarial and antioxidant properties. Persea americana (avocado) leaves have been reported to possess medicinal benefits, but their antimalarial potential remains underexplored. This study evaluates the antimalarial and antioxidant effects of P. americana leaf extract in Plasmodium berghei-infected mice. Mice infected with P. berghei were treated with varying doses of the extract, and body weight, rectal temperature, packed cell volume (PCV), parasitemia levels, and oxidative stress markers were assessed. Results demonstrated a significant improvement in body weight and PCV, as well as reductions in rectal temperature, parasitemia, improved parasite clearance, and enhanced antioxidant enzyme activity in treated groups compared to the untreated control. These findings suggest that P. americana leaf extract possesses potent antimalarial and antioxidant properties, supporting its potential as a complementary therapeutic agent. Further studies are needed to elucidate its mechanisms of action and optimize dosage for clinical applications. This study contributes to the ongoing search for plant-based alternatives in malaria treatment and oxidative stress management.

References

Afolayan, F. I., Adegbolagun, O., Mwikwabe, N. N., Orwa, J., & Anumudu, C. (2020). Cytokine modulation during malaria infections by some medicinal plants. Scientific African, 8, e00428. https://doi.org/10.1016/j.sciaf.2020.e00428

Bartesaghi, S., & Radi, R. (2018). Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox biology, 14, 618-625. DOI: https://doi.org/10.1016/j.redox.2017.09.009

Burda, P. C., Crosskey, T., Lauk, K., Zurborg, A., Soehnchen, C., Liffner, B., ... & Gilberger, T. W. (2020). Structure-based identification and functional characterization of a lipocalin in the malaria parasite Plasmodium falciparum. Cell Reports, 31(12). https://doi.org/10.1016/j.celrep.2020.107817.

Chaniad, P., Techarang, T., Phuwajaroanpong, A., Plirat, W., Viriyavejakul, P., Septama, A. W., & Punsawad, C. (2023). Antimalarial efficacy and toxicological assessment of medicinal plant ingredients of Prabchompoothaweep remedy as a candidate for antimalarial drug development. BMC complementary medicine and therapies, 23(1), 12. https://doi.org/10.1186/s12906-023-03835-x

Counihan, N. A., Modak, J. K., & de Koning-Ward, T. F. (2021). How malaria parasites acquire nutrients from their host. Frontiers in Cell and Developmental Biology, 9, 649184. https://doi.org/10.3389/fcell.2021.649184

Eidangbe, G. O., & Oluba, O. M. (2024). Avocado Peel Polyphenolic-Rich Extract Attenuates Inflammatory Responses in Alloxan-Induced Diabetic Male Wistar Rats. Asian Journal of Advanced Research and Reports, 18(12), 436-449. https://doi.org/10.9734/ajarr/2024/v18i12841

Ellman, G.L. (1959). Tissue sulfhydryl groups. Arch. Biochem. Biophy. 82, 70-77. https://doi.org/10.1016/0003-9861(59)90090-6.

Evbuomwan, I. O., Adeyemi, O. S., & Oluba, O. M. (2025). Aqueous extract of Enantia chlorantha Oliv. demonstrates antimalarial activity and improves redox imbalance and biochemical alterations in mice. BMC Complementary Medicine and Therapies, 25(1), 73. https://doi.org/10.1186/s12906-025-04745-w

Gupta, Y., Sharma, N., Singh, S., Romero, J. G., Rajendran, V., Mogire, R. M., ... & Kempaiah, P. (2022). The multistage antimalarial compound Calxinin perturbates P. falciparum Ca2+ homeostasis by targeting a unique ion channel. Pharmaceutics, 14(7), 1371. https://doi.org/10.3390/pharmaceutics14071371.

Hamzah, R. U., Jigam, A. A., Makun, H. A., & Egwim, E. C. (2013). Antioxidant properties of selected African vegetables, fruits and mushrooms: A review. Mycotoxin and food safety in developing countries, 2013, 203-209. DPI: 10.5772/52771.

Hirako, I. C., Ramalho, T., & Gazzinelli, R. T. (2025). Immune regulation of host energy metabolism and periodicity of malaria parasites. Philosophical Transactions B, 380(1918), 20230511. https://doi.org/10.1098/rstb.2023.0511.

Karagianni, C., & Bazopoulou, D. (2024). Redox regulation in lifespan determination. Journal of Biological Chemistry, 300(3). https://doi.org/10.1016/j.jbc.2024.105761.

Kolawole, E. O., Ayeni, E. T., Abolade, S. A., Ugwu, S. E., Awoyinka, T. B., Ofeh, A. S., & Okolo, B. O. (2023). Malaria endemicity in Sub-Saharan Africa: Past and present issues in public health. Microbes and Infectious Diseases, 4(1), 242-251. https://doi.org/10.21608/MID.2022.150194.1346.

Kumatia, E. K., Zoiku, F. K., Asase, A., & Tung, N. H. (2023). Anti-malarial activity of the alkaloid, heptaphylline, and the furanocoumarin, imperatorin, from Clausena anisata against human Plasmodium falciparum malaria parasites: ex vivo trophozoitocidal, schizonticidal and gametocytocidal approach. Malaria Journal, 22(1), 264. https://doi.org/10.1186/s12936-023-04678-0.

Mavelli, I., Rigo, A., Federico, R., Ciriolo, M. R., & Rotilio, G. (1982). Superoxide dismutase, glutathione peroxidase and catalase in developing rat brain. Biochemical Journal, 204(2), 535-540. https://doi.org/10.1042/bj2040535.

Mavondo, G. A., Mkhwanazi, B. N., Mhlanga, C., Dangarembizi, R., Mukonowenzou, N., Mzingwane, M. L., & Mavondo, J. (2019). Oxidative Stress in Malarial Diseases: Plasmodium-Human Host Interactions and Therapeutic Interventions. Oxidative Stress in Microbial Diseases, 411-452. https://doi.org/10.3390/ijms131216346.

Misra, H. P., & Fridovich, I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological chemistry, 247(10), 3170-3175. https://doi.org/10.1016/S0021-9258(19)45228-9.

Nandi, S., Ahmed, S., & Saxena, A. K. (2022). Exploring the role of antioxidants to combat oxidative stress in malaria Parasites. Current Topics in Medicinal Chemistry, 22(24), 2029-2044. https://doi.org/10.2174/1568026622666220405121643.

National Research Council, Division on Earth, Life Studies, Institute for Laboratory Animal Research, Committee for the Update of the Guide for the Care, & Use of Laboratory Animals. (2010). Guide for the care and use of laboratory animals.

Oluba, O. M. (2019). Ganoderma terpenoid extract exhibited anti-plasmodial activity by a mechanism involving reduction in erythrocyte and hepatic lipids in Plasmodium berghei infected mice. Lipids in health and disease, 18(1), 12. https://doi.org/10.1186/s12944-018-0951-x.

Oluba, O. M., Akpor, O. B., Adebiyi, F. D., Josiah, S. J., Alabi, O. O., Shoyombo, A. O., & Olusola, A. O. (2020). Effects of co-administration of Ganoderma terpenoid extract with chloroquine on inflammatory markers and antioxidant status in Plasmodium berghei-infected mice. Journal of Integrative Medicine, 18(6), 522-529. https://doi.org/10.1016/j.joim.2020.08.002.

Onyedikachi, U. B., Nkwocha, C. C., Ejiofor, E., & Nnanna, C. C. (2024). Investigation of chemical constituents, antioxidant, anti-inflammatory and nutritional properties of oil of Persea americana (Avocado) seeds. Food Chemistry Advances, 5, 100770. https://doi.org/10.1016/j.focha.2024.100770.

Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., & Wrbel, H. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. Journal of Cerebral Blood Flow & Metabolism, 40(9), 1769-1777.

Pradniwat, P. (2024). Natural Products as Antioxidant Adjunct Therapy for Blood Parasitic Infections. In Botanicals and Natural Bioactives: Prevention and Treatment of Diseases (pp. 71-109). Bentham Science Publishers. https://doi.org/10.2174/97898152382731240201.

Tiiba, J. D. I., Ahmadu, P. U., Naamawu, A., Fuseini, M., Raymond, A., Osei-Amoah, E., ... & Eyulaku, N. J. (2023). Thrombocytopenia a predictor of malaria: how far?. Journal of Parasitic Diseases, 47(1), 1-11. https://doi.org/10.1007/s12639-022-01557-4.

Vasquez, M., Zuniga, M., & Rodriguez, A. (2021). Oxidative stress and pathogenesis in malaria. Frontiers in cellular and infection microbiology, 11, 768182. https://doi.org/10.3389/fcimb.2021.768182.

Varela, E. L. P., Gomes, A. R. Q., da Silva Barbosa dos Santos, A., de Carvalho, E. P., Vale, V. V., & Percrio, S. (2022). Potential benefits of lycopene consumption: rationale for using it as an adjuvant treatment for malaria patients and in several diseases. Nutrients, 14(24), 5303. https://doi.org/10.3390/nu14245303.

Published
2025-04-30
How to Cite
Eidangbe, G. O. (2025). ANTIMALARIAL AND ANTIOXIDANT EFFECTS OF Persea Americana (avocado) LEAF EXTRACT IN Plasmodium berghei-INFECTED MICE. FUDMA JOURNAL OF SCIENCES, 9(4), 190 - 196. https://doi.org/10.33003/fjs-2025-0904-3577