EVALUATION OF PLASMA TRACE ELEMENTS LEVELS IN HUMAN IMMUNODEFICIENCY VIRUS (HIV) PATIENTS ON HIGHLY ACTIVE ANTIRETROVIRAL THERAPY (HAART) ATTENDING FEDERAL MEDICAL CENTER OWERRI, IMO STATE

Authors

  • D. Chinedu Ejiofor
  • B. Edward-Ejiofor Imo State University, Owerri
  • P. Ngozi Alisi David Umahi Federal University of Health Sciences Uburu
  • E. Lolly Mbanaso Abia State University, Uturu
  • N. Emeka Earnest Imo State University, Owerri
  • C. Ifeanyi Amah David Umahi Federal University of Health Sciences Uburu
  • A. Uche Obi Imo State University, Owerri
  • A. Samson David Umahi Federal University of Health Sciences Uburu
  • K. Collins Onwuka Abia State University, Uturu

DOI:

https://doi.org/10.33003/fjs-2025-0904-3575

Keywords:

Patients, Selenium, Serum, Virus, Zinc

Abstract

Trace elements play significant biological roles that drive life and can be affected by the deleterious effects of the Human Immunodeficiency Virus (HIV). Highly active antiretroviral therapy (HAART) is a combination of several antiretroviral therapies that have the potential to improve the quality of life of individuals with HIV infection. The aim of this study was to evaluate the plasma trace elements of HIV-positive individuals on HAART. A total of 196 participants were recruited for the study, including 126 HIV patients on HAART, 35 HIV non-HAART patients, and 35 HIV-negative subjects. HIV status and plasma trace element levels of the participants were determined using standard procedures. The results of the study showed that zinc, selenium, and iron levels in HAART patients were significantly higher (p<0.05) than those in non-HAART patients (control group 1) but lower than those in the control group 2. Additionally, these elements were significantly higher (p<0.05) in male patients on HAART compared to their female counterparts. In conclusion, this study suggests that HAART has a positive influence on blood serum trace element metabolism in HIV-positive patients.

References

Abdulrahman, S., Tout, H., Ould-Slimane, H., Mourad, A., Talhi, C., & Guizani, M. (2021). A Survey on Federated Learning: The Journey From Centralized to Distributed On-Site Learning and Beyond. IEEE Internet of Things Journal, 8(7), 54765497. https://doi.org/10.1109/JIOT.2020.3030072

Aledhari, M., Razzak, R., Parizi, R. M., & Saeed, F. (2020). Federated Learning: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Access, 8, 140699140725. https://doi.org/10.1109/ACCESS.2020.3013541

Chen, H., Wang, H., Long, Q., Jin, D., & Li, Y. (2023). Advancements in Federated Learning: Models, Methods, and Privacy (Version 2). arXiv. https://doi.org/10.48550/ARXIV.2302.11466

Fragulis, G. F., Papatsimouli, M., Lazaridis, L., & Skordas, I. A. (2021). An Online Dynamic Examination System (ODES) based on open source software tools. Software Impacts, 7, 100046. https://doi.org/10.1016/j.simpa.2020.100046

Godfrey Perfectson Oise. (2023). A Framework on E-Waste Management and Data Security System. International Journal on Transdisciplinary Research and Emerging Technologies, 1(1).

Gray, M., Fox, N., Gordon, J. E., Brilha, J., Charkraborty, A., Garcia, M. D. G., Hjort, J., Kubalkov, L., Seijmonsbergen, A. C., & Urban, J. (2024). Boundary of ecosystem services: A response to. Journal of Environmental Management, 351, 119666. https://doi.org/10.1016/j.jenvman.2023.119666

Gu, M., Naraparaju, R., & Zhao, D. (2024). Enhancing Data Provenance and Model Transparency in Federated Learning SystemsA Database Approach (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2403.01451

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., DOliveira, R. G. L., Eichner, H., Rouayheb, S. E., Evans, D., Gardner, J., Garrett, Z., Gascn, A., Ghazi, B., Gibbons, P. B., Zhao, S. (2019). Advances and Open Problems in Federated Learning (Version 3). arXiv. https://doi.org/10.48550/ARXIV.1912.04977

Khan, L. U., Saad, W., Han, Z., Hossain, E., & Hong, C. S. (2021). Federated Learning for Internet of Things: Recent Advances, Taxonomy, and Open Challenges. IEEE Communications Surveys & Tutorials, 23(3), 17591799. https://doi.org/10.1109/COMST.2021.3090430

Lazaridis, L., Papatsimouli, M., & Fragulis, G. F. (2019). A synchronous-asynchronous tele-education platform. International Journal of Smart Technology and Learning, 1(2), 122. https://doi.org/10.1504/IJSMARTTL.2019.097950

Li, L., Fan, Y., Tse, M., & Lin, K.-Y. (2020). A review of applications in federated learning. Computers & Industrial Engineering, 149, 106854. https://doi.org/10.1016/j.cie.2020.106854

Li, Z., He, S., Chaturvedi, P., Kindratenko, V., Huerta, E. A., Kim, K., & Madduri, R. (2024). Secure Federated Learning Across Heterogeneous Cloud and High-Performance Computing ResourcesA Case Study on Federated Fine-tuning of LLaMA 2 (arXiv:2402.12271). arXiv. https://doi.org/10.48550/arXiv.2402.12271

Mothukuri, V., Parizi, R. M., Pouriyeh, S., Huang, Y., Dehghantanha, A., & Srivastava, G. (2021). A survey on security and privacy of federated learning. Future Generation Computer Systems, 115, 619640. https://doi.org/10.1016/j.future.2020.10.007

Nathan George. (2020). All Lending Club loan data [Dataset]. Kaggle online data repository. https://www.kaggle.com/datasets/wordsforthewise/lending-club

Nevrataki, T., Iliadou, A., Ntolkeras, G., Sfakianakis, I., Lazaridis, L., Maraslidis, G., Asimopoulos, N., & Fragulis, G. F. (2023). A survey on federated learning applications in healthcare, finance, and data privacy/data security. 120015. https://doi.org/10.1063/5.0182160

Nguyen, D. C., Ding, M., Pathirana, P. N., Seneviratne, A., Li, J., & Vincent Poor, H. (2021). Federated Learning for Internet of Things: A Comprehensive Survey. IEEE Communications Surveys & Tutorials, 23(3), 16221658. https://doi.org/10.1109/COMST.2021.3075439

Oise, G. (2023). A Web Base E-Waste Management and Data Security System. RADINKA JOURNAL OF SCIENCE AND SYSTEMATIC LITERATURE REVIEW, 1(1), 4955. https://doi.org/10.56778/rjslr.v1i1.113

Oise, G., & Konyeha, S. (2024). E-WASTE MANAGEMENT THROUGH DEEP LEARNING: A SEQUENTIAL NEURAL NETWORK APPROACH. FUDMA JOURNAL OF SCIENCES, 8(3), 1724. https://doi.org/10.33003/fjs-2024-0804-2579

Oise, G. P., & Konyeha, S. (2024). Deep Learning System for E-Waste Management. The 3rd International Electronic Conference on Processes, 66. https://doi.org/10.3390/engproc2024067066

Oise, G. P., Nwabuokei, O. C., Akpowehbve, O. J., Eyitemi, B. A., & Unuigbokhai, N. B. (2025). TOWARDS SMARTER CYBER DEFENSE: LEVERAGING DEEP LEARNING FOR THREAT IDENTIFICATION AND PREVENTION. FUDMA JOURNAL OF SCIENCES, 9(3), 122128. https://doi.org/10.33003/fjs-2025-0903-3264

Papatsimouli, M., Lazaridis, L., Ziouzios, D., Dasygenis, M., & Fragulis, G. (2022). Internet Of Things (IoT) awareness in Greece. SHS Web of Conferences, 139, 03013. https://doi.org/10.1051/shsconf/202213903013

Rells, J., & Joseph, W. (2025). Federated Learning for Secure Financial Transactions. https://www.researchgate.net/publication/389389123

Tsakiris, G., Papadopoulos, C., Patrikalos, G., Kollias, K.-F., Asimopoulos, N., & Fragulis, G. F. (2022). The development of a chatbot using Convolutional Neural Networks. SHS Web of Conferences, 139, 03009. https://doi.org/10.1051/shsconf/202213903009

Yu, S., Muoz, J. P., & Jannesari, A. (2024). Federated Foundation Models: Privacy-Preserving and Collaborative Learning for Large Models (arXiv:2305.11414). arXiv. https://doi.org/10.48550/arXiv.2305.11414

Zacharis, G., Gadounas, G., Tsirtsakis, P., Maraslidis, G., Assimopoulos, N., & Fragulis, G. (2022). Implementation and Optimization of Image Processing Algorithm using Machine Learning and Image Compression. SHS Web of Conferences, 139, 03014. https://doi.org/10.1051/shsconf/202213903014

Zelios, A., Grammenos, A., Papatsimouli, M., Asimopoulos, N., & Fragulis, G. (2022). Recursive neural networks: Recent results and applications. SHS Web of Conferences, 139, 03007. https://doi.org/10.1051/shsconf/202213903007

Zhang, Y., Bai, G., Li, X., Nepal, S., & Ko, R. K. L. (2021). Confined Gradient Descent: Privacy-preserving Optimization for Federated Learning (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2104.13050

Published

2025-04-30

How to Cite

Ejiofor, D. C., Edward-Ejiofor, B., Alisi, P. N., Mbanaso, E. L., Earnest, N. E., Amah, C. I., Obi, A. U., Samson, A., & Onwuka, K. C. (2025). EVALUATION OF PLASMA TRACE ELEMENTS LEVELS IN HUMAN IMMUNODEFICIENCY VIRUS (HIV) PATIENTS ON HIGHLY ACTIVE ANTIRETROVIRAL THERAPY (HAART) ATTENDING FEDERAL MEDICAL CENTER OWERRI, IMO STATE. FUDMA JOURNAL OF SCIENCES, 9(4), 187 - 189. https://doi.org/10.33003/fjs-2025-0904-3575

Most read articles by the same author(s)