EVALUATION OF PLASMA TRACE ELEMENTS LEVELS IN HUMAN IMMUNODEFICIENCY VIRUS (HIV) PATIENTS ON HIGHLY ACTIVE ANTIRETROVIRAL THERAPY (HAART) ATTENDING FEDERAL MEDICAL CENTER OWERRI, IMO STATE
DOI:
https://doi.org/10.33003/fjs-2025-0904-3575Keywords:
Patients, Selenium, Serum, Virus, ZincAbstract
Trace elements play significant biological roles that drive life and can be affected by the deleterious effects of the Human Immunodeficiency Virus (HIV). Highly active antiretroviral therapy (HAART) is a combination of several antiretroviral therapies that have the potential to improve the quality of life of individuals with HIV infection. The aim of this study was to evaluate the plasma trace elements of HIV-positive individuals on HAART. A total of 196 participants were recruited for the study, including 126 HIV patients on HAART, 35 HIV non-HAART patients, and 35 HIV-negative subjects. HIV status and plasma trace element levels of the participants were determined using standard procedures. The results of the study showed that zinc, selenium, and iron levels in HAART patients were significantly higher (p<0.05) than those in non-HAART patients (control group 1) but lower than those in the control group 2. Additionally, these elements were significantly higher (p<0.05) in male patients on HAART compared to their female counterparts. In conclusion, this study suggests that HAART has a positive influence on blood serum trace element metabolism in HIV-positive patients.
References
Abdulrahman, S., Tout, H., Ould-Slimane, H., Mourad, A., Talhi, C., & Guizani, M. (2021). A Survey on Federated Learning: The Journey From Centralized to Distributed On-Site Learning and Beyond. IEEE Internet of Things Journal, 8(7), 54765497. https://doi.org/10.1109/JIOT.2020.3030072
Aledhari, M., Razzak, R., Parizi, R. M., & Saeed, F. (2020). Federated Learning: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Access, 8, 140699140725. https://doi.org/10.1109/ACCESS.2020.3013541
Chen, H., Wang, H., Long, Q., Jin, D., & Li, Y. (2023). Advancements in Federated Learning: Models, Methods, and Privacy (Version 2). arXiv. https://doi.org/10.48550/ARXIV.2302.11466
Fragulis, G. F., Papatsimouli, M., Lazaridis, L., & Skordas, I. A. (2021). An Online Dynamic Examination System (ODES) based on open source software tools. Software Impacts, 7, 100046. https://doi.org/10.1016/j.simpa.2020.100046
Godfrey Perfectson Oise. (2023). A Framework on E-Waste Management and Data Security System. International Journal on Transdisciplinary Research and Emerging Technologies, 1(1).
Gray, M., Fox, N., Gordon, J. E., Brilha, J., Charkraborty, A., Garcia, M. D. G., Hjort, J., Kubalkov, L., Seijmonsbergen, A. C., & Urban, J. (2024). Boundary of ecosystem services: A response to. Journal of Environmental Management, 351, 119666. https://doi.org/10.1016/j.jenvman.2023.119666
Gu, M., Naraparaju, R., & Zhao, D. (2024). Enhancing Data Provenance and Model Transparency in Federated Learning SystemsA Database Approach (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2403.01451
Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., DOliveira, R. G. L., Eichner, H., Rouayheb, S. E., Evans, D., Gardner, J., Garrett, Z., Gascn, A., Ghazi, B., Gibbons, P. B., Zhao, S. (2019). Advances and Open Problems in Federated Learning (Version 3). arXiv. https://doi.org/10.48550/ARXIV.1912.04977
Khan, L. U., Saad, W., Han, Z., Hossain, E., & Hong, C. S. (2021). Federated Learning for Internet of Things: Recent Advances, Taxonomy, and Open Challenges. IEEE Communications Surveys & Tutorials, 23(3), 17591799. https://doi.org/10.1109/COMST.2021.3090430
Lazaridis, L., Papatsimouli, M., & Fragulis, G. F. (2019). A synchronous-asynchronous tele-education platform. International Journal of Smart Technology and Learning, 1(2), 122. https://doi.org/10.1504/IJSMARTTL.2019.097950
Li, L., Fan, Y., Tse, M., & Lin, K.-Y. (2020). A review of applications in federated learning. Computers & Industrial Engineering, 149, 106854. https://doi.org/10.1016/j.cie.2020.106854
Li, Z., He, S., Chaturvedi, P., Kindratenko, V., Huerta, E. A., Kim, K., & Madduri, R. (2024). Secure Federated Learning Across Heterogeneous Cloud and High-Performance Computing ResourcesA Case Study on Federated Fine-tuning of LLaMA 2 (arXiv:2402.12271). arXiv. https://doi.org/10.48550/arXiv.2402.12271
Mothukuri, V., Parizi, R. M., Pouriyeh, S., Huang, Y., Dehghantanha, A., & Srivastava, G. (2021). A survey on security and privacy of federated learning. Future Generation Computer Systems, 115, 619640. https://doi.org/10.1016/j.future.2020.10.007
Nathan George. (2020). All Lending Club loan data [Dataset]. Kaggle online data repository. https://www.kaggle.com/datasets/wordsforthewise/lending-club
Nevrataki, T., Iliadou, A., Ntolkeras, G., Sfakianakis, I., Lazaridis, L., Maraslidis, G., Asimopoulos, N., & Fragulis, G. F. (2023). A survey on federated learning applications in healthcare, finance, and data privacy/data security. 120015. https://doi.org/10.1063/5.0182160
Nguyen, D. C., Ding, M., Pathirana, P. N., Seneviratne, A., Li, J., & Vincent Poor, H. (2021). Federated Learning for Internet of Things: A Comprehensive Survey. IEEE Communications Surveys & Tutorials, 23(3), 16221658. https://doi.org/10.1109/COMST.2021.3075439
Oise, G. (2023). A Web Base E-Waste Management and Data Security System. RADINKA JOURNAL OF SCIENCE AND SYSTEMATIC LITERATURE REVIEW, 1(1), 4955. https://doi.org/10.56778/rjslr.v1i1.113
Oise, G., & Konyeha, S. (2024). E-WASTE MANAGEMENT THROUGH DEEP LEARNING: A SEQUENTIAL NEURAL NETWORK APPROACH. FUDMA JOURNAL OF SCIENCES, 8(3), 1724. https://doi.org/10.33003/fjs-2024-0804-2579
Oise, G. P., & Konyeha, S. (2024). Deep Learning System for E-Waste Management. The 3rd International Electronic Conference on Processes, 66. https://doi.org/10.3390/engproc2024067066
Oise, G. P., Nwabuokei, O. C., Akpowehbve, O. J., Eyitemi, B. A., & Unuigbokhai, N. B. (2025). TOWARDS SMARTER CYBER DEFENSE: LEVERAGING DEEP LEARNING FOR THREAT IDENTIFICATION AND PREVENTION. FUDMA JOURNAL OF SCIENCES, 9(3), 122128. https://doi.org/10.33003/fjs-2025-0903-3264
Papatsimouli, M., Lazaridis, L., Ziouzios, D., Dasygenis, M., & Fragulis, G. (2022). Internet Of Things (IoT) awareness in Greece. SHS Web of Conferences, 139, 03013. https://doi.org/10.1051/shsconf/202213903013
Rells, J., & Joseph, W. (2025). Federated Learning for Secure Financial Transactions. https://www.researchgate.net/publication/389389123
Tsakiris, G., Papadopoulos, C., Patrikalos, G., Kollias, K.-F., Asimopoulos, N., & Fragulis, G. F. (2022). The development of a chatbot using Convolutional Neural Networks. SHS Web of Conferences, 139, 03009. https://doi.org/10.1051/shsconf/202213903009
Yu, S., Muoz, J. P., & Jannesari, A. (2024). Federated Foundation Models: Privacy-Preserving and Collaborative Learning for Large Models (arXiv:2305.11414). arXiv. https://doi.org/10.48550/arXiv.2305.11414
Zacharis, G., Gadounas, G., Tsirtsakis, P., Maraslidis, G., Assimopoulos, N., & Fragulis, G. (2022). Implementation and Optimization of Image Processing Algorithm using Machine Learning and Image Compression. SHS Web of Conferences, 139, 03014. https://doi.org/10.1051/shsconf/202213903014
Zelios, A., Grammenos, A., Papatsimouli, M., Asimopoulos, N., & Fragulis, G. (2022). Recursive neural networks: Recent results and applications. SHS Web of Conferences, 139, 03007. https://doi.org/10.1051/shsconf/202213903007
Zhang, Y., Bai, G., Li, X., Nepal, S., & Ko, R. K. L. (2021). Confined Gradient Descent: Privacy-preserving Optimization for Federated Learning (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2104.13050
Published
How to Cite
Issue
Section
Copyright (c) 2025 FUDMA JOURNAL OF SCIENCES

This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences