REVOLUTION OR DISTRACTION? ANALYZING GENERATIVE AI’S IMPACT ON UNDERGRADUATE STUDENT PERFORMANCE
DOI:
https://doi.org/10.33003/fjs-2025-0904-3574Keywords:
AI, ChatGPT, Generative AI, Impact, Performance, Student, UndergraduateAbstract
Using ChatGPT regularly produces academic success, plus it develops moral critical thinking abilities and problem-solving capabilities. The use of ChatGPT creates ongoing concerns for stakeholders regarding system dependency and ethical implications that surface when users implement it. However, stakeholders continue to raise multiple concerns about both dependence on ChatGPT and the moral ramifications that come from using it. This study aims to analyze the impact of generative AI, particularly ChatGPT, on the academic performance of undergraduate students in five federal leading universities in Nigeria. A statistical analysis using Chi-square tests together with independent t-tests discovered meaningful relationships connecting academic achievements to ChatGPT usage. The study reveals that educational institutions can achieve effective results when combining AI tools like ChatGPT with conventional methods under strategic circumstances and need continuous ethical monitoring. Academic liability and the sustained advancement of critical thinking competence remain unharmed when ChatGPT use is implemented correctly.
References
Afsaneh, E., Sharifdini, A., Ghazzaghi, H., & Ghobadi, M. (2022). Recent applications of machine learning and deep learning models in the prediction, diagnosis, and management of diabetes: a comprehensive review. Diabetology & Metabolic Syndrome, 14(1). https://doi.org/10.1186/S13098-022-00969-9
Alfian, G., Syafrudin, M., Ijaz, F., Syaekhoni, M. A., Fitriyani, N. L., & Rhee, J. (2018). A personalized healthcare monitoring system for diabetic patients by utilizing BLE-based sensors and real-time data processing. Sensor (Switzerland).
Balaji, V., & Sugumar, R. (2022). A Comprehensive Review of Diabetes Mellitus Exposure and Prediction using Deep Learning Techniques. 2022 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI). https://doi.org/10.1109/ICDSAAI55433.2022.10028832
Barath, K. (2021). Introduction to Deep Neural Networks. https://www.datacamp.com/tutorial/introduction-to-deep-neural-networks
Barhun, L., & Sission, B. (2023). Diabetes and hypertension: Connection, complications, risks. https://www.medicalnewstoday.com/articles/317220
Dash, T., Chitlangia, S., Ahuja, A., & Srinivasan, A. (2022). A review of some techniques for inclusion of domain-knowledge into deep neural networks. Scientific Reports 2022 12:1, 12(1), 115. https://doi.org/10.1038/s41598-021-04590-0
DeGuire, J., Clarke, J., Rouleau, K., Roy, J., & Bushnik, T. (2019). Blood pressure and hypertension. Health Reports, 30(2), 1421. https://doi.org/10.25318/82-003-x201900200002
Farahani, A., Voghoei, S., Rasheed, K., & Arabnia, H. R. (2021). A Brief Review of Domain Adaptation. 877894. https://doi.org/10.1007/978-3-030-71704-9_65/COVER
Ganie, S. M., Kanti, P., Pramanik, D., Malik, M. B., Mallik, S., & Qin, H. (2023). An ensemble learning approach for diabetes prediction using boosting techniques. https://doi.org/10.3389/fgene.2023.1252159
Gopisetti, L. D., Kummera, S. K. L., Pattamsetti, S. R., Kuna, S., Parsi, N., & Kodali, H. P. (2023). Multiple Disease Prediction System using Machine Learning and Streamlit. Proceedings - 5th International Conference on Smart Systems and Inventive Technology, ICSSIT 2023, 923931. https://doi.org/10.1109/ICSSIT55814.2023.10060903
Heart Association, A. (2021). What is High Blood Pressure?
Kumar, & Clark. (2021). Clinical Medicine Eighth Edition (8th ed.). Wiley-Blackwell.
Kumari, S., Kumar, D., & Mittal, M. (2021). An ensemble approach for classification and prediction of diabetes mellitus using soft voting classifier. International Journal of Cognitive Computing in Engineering, 2, 4046. https://doi.org/10.1016/J.IJCCE.2021.01.001
Kumar, S., Bhusan, B., Singh, D., & Choubey, D. K. (2020). Classification of Diabetes using Deep Learning. Proceedings of the 2020 IEEE International Conference on Communication and Signal Processing, ICCSP 2020, 651655. https://doi.org/10.1109/ICCSP48568.2020.9182293
Pan, S. J., & Yang, Q. (2020). A survey on transfer learning. In IEEE Transactions on Knowledge and Data Engineering (Vol. 22, Issue 10, pp. 13451359). https://doi.org/10.1109/TKDE.2009.191
Qingnan, S., Jankovic, M. V, Joao, B., Moore, B. L., Diem, P., Stettler, C., & Mougiakakou, S. (2019). Predicting blood glucose with an LSTM and bi-LSTM based deep neural network,. 14th IEEE Symp. Neural Networks Application.
Rushakoff, R. J., Rushakoff, J. A., Kornberg, Z., MacMaster, H. W., & Shah, A. D. (2017). Remote Monitoring and Consultation of Inpatient Populations with Diabetes. In Current Diabetes Reports (Vol. 17, Issue 9). Current Medicine Group LLC 1. https://doi.org/10.1007/s11892-017-0896-x
Rushakoff, R. J., Sullivan, M. M., MacMaster, H. W., Shah, A. D., Rajkomar, A., Glidden, D. V., & Kohn, M. A. (2017). Association Between a Virtual Glucose Management Service and Glycemic Control in Hospitalized Adult Patients: An Observational Study. Annals of Internal Medicine, 166(9), 621627. https://doi.org/10.7326/M16-1413
Sheen, Y. J., Huang, C. C., Huang, S. C., Huang, M. De, Lin, C. H., Lee, I. Te, Lin, S. Y., & Sheu, W. H. H. (2020). Implementation of an electronic dashboard with a remote management system to improve glycemic management among hospitalized adults. Endocrine Practice, 26(2), 179191. https://doi.org/10.4158/EP-2019-0264
Song, L., Li, J., Yu, S., Cai, Y., He, H., Lun, J., Zheng, L., & Ye, J. (2023). Body Mass Index is Associated with blood pressure and vital capacity in medical students. Lipids in Health and Disease, 22(1), 19. https://doi.org/10.1186/S12944-023-01920-1/TABLES/4
Stephen, B. U. A., Uzoewulu, B. C., Asuquo, P. M., & Ozuomba, S. (2023). Diabetes and hypertension MobileHealth systems: a review of general challenges and advancements. Journal of Engineering and Applied Sciences, 70(1). https://doi.org/10.1186/S44147-023-00240-6
Warr, K. (2020). Deep Neural Network (DNN) Fundamentals. https://learning.oreilly.com/library/view/strengthening-deep-neural/9781492044949/ch03.html#idm46869966445432
Williams, R., & Farrar, H. (2018). Diabetes Mellitus.
Yashvanth, R., Rehan, M., Kodipalli, A., Rohini, B. R., & Rao, T. (2023). Diabetes, Hypertension and Stroke Prediction Using Computational Algorithms. 2023 World Conference on Communication & Computing (WCONF). https://doi.org/10.1109/WCONF58270.2023.10235026
Zhou, B., Rodrigo, C.-L., Danaei, G., Riley, L., Paciorek, C., Stevens, G., Gregg, E., Bennett, J., Solomon, B., Singleton, R., Sophiea, M., Iurilli, M., Lhoste, V., Cowan, M., Savin, S., Woodward, M., Balanova, Y., Cifkova, R., Damasceno, A., Zuiga Cisneros, J. (2021). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet, 398(10304), 957980. https://doi.org/10.1016/s0140-6736(21)01330-1
Zhou, H., Myrzashova, R., & Zheng, R. (2020). Diabetes prediction model based on an enhanced deep neural network. Eurasip Journal on Wireless Communications and Networking, 2020(1). https://doi.org/10.1186/s13638-020-01765-7
Published
How to Cite
Issue
Section
FUDMA Journal of Sciences