REVOLUTION OR DISTRACTION? ANALYZING GENERATIVE AI’S IMPACT ON UNDERGRADUATE STUDENT PERFORMANCE

Authors

  • Abdulrashid Abdulrauf Federal Polytechnic Kaltungo, Gombe
  • Omolara Busayo Abodunrin Federal School of Surveying Oyo
  • Oluwatoyin Omoloba Federal School of Surveying Oyo

DOI:

https://doi.org/10.33003/fjs-2025-0904-3574

Keywords:

AI, ChatGPT, Generative AI, Impact, Performance, Student, Undergraduate

Abstract

Using ChatGPT regularly produces academic success, plus it develops moral critical thinking abilities and problem-solving capabilities. The use of ChatGPT creates ongoing concerns for stakeholders regarding system dependency and ethical implications that surface when users implement it. However, stakeholders continue to raise multiple concerns about both dependence on ChatGPT and the moral ramifications that come from using it. This study aims to analyze the impact of generative AI, particularly ChatGPT, on the academic performance of undergraduate students in five federal leading universities in Nigeria. A statistical analysis using Chi-square tests together with independent t-tests discovered meaningful relationships connecting academic achievements to ChatGPT usage. The study reveals that educational institutions can achieve effective results when combining AI tools like ChatGPT with conventional methods under strategic circumstances and need continuous ethical monitoring.  Academic liability and the sustained advancement of critical thinking competence remain unharmed when ChatGPT use is implemented correctly.

References

Afsaneh, E., Sharifdini, A., Ghazzaghi, H., & Ghobadi, M. (2022). Recent applications of machine learning and deep learning models in the prediction, diagnosis, and management of diabetes: a comprehensive review. Diabetology & Metabolic Syndrome, 14(1). https://doi.org/10.1186/S13098-022-00969-9

Alfian, G., Syafrudin, M., Ijaz, F., Syaekhoni, M. A., Fitriyani, N. L., & Rhee, J. (2018). A personalized healthcare monitoring system for diabetic patients by utilizing BLE-based sensors and real-time data processing. Sensor (Switzerland).

Balaji, V., & Sugumar, R. (2022). A Comprehensive Review of Diabetes Mellitus Exposure and Prediction using Deep Learning Techniques. 2022 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI). https://doi.org/10.1109/ICDSAAI55433.2022.10028832

Barath, K. (2021). Introduction to Deep Neural Networks. https://www.datacamp.com/tutorial/introduction-to-deep-neural-networks

Barhun, L., & Sission, B. (2023). Diabetes and hypertension: Connection, complications, risks. https://www.medicalnewstoday.com/articles/317220

Dash, T., Chitlangia, S., Ahuja, A., & Srinivasan, A. (2022). A review of some techniques for inclusion of domain-knowledge into deep neural networks. Scientific Reports 2022 12:1, 12(1), 115. https://doi.org/10.1038/s41598-021-04590-0

DeGuire, J., Clarke, J., Rouleau, K., Roy, J., & Bushnik, T. (2019). Blood pressure and hypertension. Health Reports, 30(2), 1421. https://doi.org/10.25318/82-003-x201900200002

Farahani, A., Voghoei, S., Rasheed, K., & Arabnia, H. R. (2021). A Brief Review of Domain Adaptation. 877894. https://doi.org/10.1007/978-3-030-71704-9_65/COVER

Ganie, S. M., Kanti, P., Pramanik, D., Malik, M. B., Mallik, S., & Qin, H. (2023). An ensemble learning approach for diabetes prediction using boosting techniques. https://doi.org/10.3389/fgene.2023.1252159

Gopisetti, L. D., Kummera, S. K. L., Pattamsetti, S. R., Kuna, S., Parsi, N., & Kodali, H. P. (2023). Multiple Disease Prediction System using Machine Learning and Streamlit. Proceedings - 5th International Conference on Smart Systems and Inventive Technology, ICSSIT 2023, 923931. https://doi.org/10.1109/ICSSIT55814.2023.10060903

Heart Association, A. (2021). What is High Blood Pressure?

Kumar, & Clark. (2021). Clinical Medicine Eighth Edition (8th ed.). Wiley-Blackwell.

Kumari, S., Kumar, D., & Mittal, M. (2021). An ensemble approach for classification and prediction of diabetes mellitus using soft voting classifier. International Journal of Cognitive Computing in Engineering, 2, 4046. https://doi.org/10.1016/J.IJCCE.2021.01.001

Kumar, S., Bhusan, B., Singh, D., & Choubey, D. K. (2020). Classification of Diabetes using Deep Learning. Proceedings of the 2020 IEEE International Conference on Communication and Signal Processing, ICCSP 2020, 651655. https://doi.org/10.1109/ICCSP48568.2020.9182293

Pan, S. J., & Yang, Q. (2020). A survey on transfer learning. In IEEE Transactions on Knowledge and Data Engineering (Vol. 22, Issue 10, pp. 13451359). https://doi.org/10.1109/TKDE.2009.191

Qingnan, S., Jankovic, M. V, Joao, B., Moore, B. L., Diem, P., Stettler, C., & Mougiakakou, S. (2019). Predicting blood glucose with an LSTM and bi-LSTM based deep neural network,. 14th IEEE Symp. Neural Networks Application.

Rushakoff, R. J., Rushakoff, J. A., Kornberg, Z., MacMaster, H. W., & Shah, A. D. (2017). Remote Monitoring and Consultation of Inpatient Populations with Diabetes. In Current Diabetes Reports (Vol. 17, Issue 9). Current Medicine Group LLC 1. https://doi.org/10.1007/s11892-017-0896-x

Rushakoff, R. J., Sullivan, M. M., MacMaster, H. W., Shah, A. D., Rajkomar, A., Glidden, D. V., & Kohn, M. A. (2017). Association Between a Virtual Glucose Management Service and Glycemic Control in Hospitalized Adult Patients: An Observational Study. Annals of Internal Medicine, 166(9), 621627. https://doi.org/10.7326/M16-1413

Sheen, Y. J., Huang, C. C., Huang, S. C., Huang, M. De, Lin, C. H., Lee, I. Te, Lin, S. Y., & Sheu, W. H. H. (2020). Implementation of an electronic dashboard with a remote management system to improve glycemic management among hospitalized adults. Endocrine Practice, 26(2), 179191. https://doi.org/10.4158/EP-2019-0264

Song, L., Li, J., Yu, S., Cai, Y., He, H., Lun, J., Zheng, L., & Ye, J. (2023). Body Mass Index is Associated with blood pressure and vital capacity in medical students. Lipids in Health and Disease, 22(1), 19. https://doi.org/10.1186/S12944-023-01920-1/TABLES/4

Stephen, B. U. A., Uzoewulu, B. C., Asuquo, P. M., & Ozuomba, S. (2023). Diabetes and hypertension MobileHealth systems: a review of general challenges and advancements. Journal of Engineering and Applied Sciences, 70(1). https://doi.org/10.1186/S44147-023-00240-6

Warr, K. (2020). Deep Neural Network (DNN) Fundamentals. https://learning.oreilly.com/library/view/strengthening-deep-neural/9781492044949/ch03.html#idm46869966445432

Williams, R., & Farrar, H. (2018). Diabetes Mellitus.

Yashvanth, R., Rehan, M., Kodipalli, A., Rohini, B. R., & Rao, T. (2023). Diabetes, Hypertension and Stroke Prediction Using Computational Algorithms. 2023 World Conference on Communication & Computing (WCONF). https://doi.org/10.1109/WCONF58270.2023.10235026

Zhou, B., Rodrigo, C.-L., Danaei, G., Riley, L., Paciorek, C., Stevens, G., Gregg, E., Bennett, J., Solomon, B., Singleton, R., Sophiea, M., Iurilli, M., Lhoste, V., Cowan, M., Savin, S., Woodward, M., Balanova, Y., Cifkova, R., Damasceno, A., Zuiga Cisneros, J. (2021). Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet, 398(10304), 957980. https://doi.org/10.1016/s0140-6736(21)01330-1

Zhou, H., Myrzashova, R., & Zheng, R. (2020). Diabetes prediction model based on an enhanced deep neural network. Eurasip Journal on Wireless Communications and Networking, 2020(1). https://doi.org/10.1186/s13638-020-01765-7

Published

2025-04-30

How to Cite

Abdulrauf, A., Abodunrin, O. B., & Omoloba, O. (2025). REVOLUTION OR DISTRACTION? ANALYZING GENERATIVE AI’S IMPACT ON UNDERGRADUATE STUDENT PERFORMANCE. FUDMA JOURNAL OF SCIENCES, 9(4), 181 - 186. https://doi.org/10.33003/fjs-2025-0904-3574