ISOLATION AND CHARACTERIZATION OF CELLULOSE-DEGRADING FUNGI FROM Arachis hypogaea Shells FOR POTENTIAL BIOMASS VALORIZATION
Abstract
The exploitation of agro-industrial waste provides a sustainable method for enzyme production and biomass use. This work examined the isolation and characterization of cellulolytic fungi from decomposed Arachis hypogaea (groundnut) shells, a lignocellulosic substrate abundant in cellulose. Four fungal isolates were procured, of which two (OPGS and OPBS) had notable cellulolytic activity, as indicated by distinct hydrolysis zones on carboxymethyl cellulose (CMC) agar stained with Congo red. The isolates were identified as Aspergillus flavus and Aspergillus niger through morphological and microscopic investigation. Quantitative screening in submerged fermentation demonstrated maximal cellulase activities of 86.7 ± 1.7 U/mL for A. flavus and 92.3 ± 1.1 U/mL for A. niger. Enzyme activity associated with a gradual decrease in pH, signifying active substrate metabolism. These findings emphasize the viability of groundnut shell as an economical substrate for cellulase production and demonstrate the appropriateness of Aspergillus strains in biomass bioconversion processes.
References
Ahmed, J., Taslim, A., Raihan, T., Sohag, M., Hasan, M., Suhani, S., & Azad, A. (2022). Characterization of an endobeta1,4 glucanase gene from paperdegrading and denim biostoning cellulase producing Aspergillus isolates. Biotechnology and Applied Biochemistry, 70(3), 10571071. https://doi.org/10.1002/bab.2420
Arnthong, J., Siamphan, C., Chuaseeharonnachai, C., Boonyuen, N., & Suwannarangsee, S. (2020). Towards a miniaturized culture screening for cellulolytic fungi and their agricultural lignocellulosic degradation. Journal of Microbiology and Biotechnology, 30(11), 16701679. https://doi.org/10.4014/jmb.2007.07005
Bairagi, S. (2016). Isolation, screening and selection of fungal strains for potential cellulase and xylanase production. International Journal of Pharmaceutical Science Invention.(5: 3), 1-6.
Bakare, V., Abdulsalami, M. S., Ndibe, T. O., Ejuama, C. K., Effiong, T., & Ebipade, K. (2022). Production of cellulosic enzymes by Aspergillus Niger and hydrolysis of cellulosic materials. Global Journal of Pure and Applied Sciences, 28(2), 121-129.
Cheng, M., Wijayawardene, N., Promputtha, I., Vries, R., Lan, Y., Luo, G., & Kang, Y. (2022). Potential fungi isolated from anti-biodegradable Chinese medicine residue to degrade lignocellulose. Frontiers in Microbiology, 13, 877884. https://doi.org/10.3389/fmicb.2022.877884
Dhiman, S., Kaur, P., Narang, J., Mukherjee, G., Thakur, B., Kaur, S., & Tripathi, M. (2024). Fungal bioprocessing for circular bioeconomy: Exploring lignocellulosic waste valorization. Mycology: An International Journal on Fungal Biology, 126. https://doi.org/10.1080/21501203.2024.2316824
Daz, G., Coniglio, R., Chungara, C., Zapata, P., Villalba, L., & Fonseca, M. (2020). Aspergillus niger LBM 134 isolated from rotten wood and its potential cellulolytic ability. Mycology: An International Journal on Fungal Biology, 12(3), 160173. https://doi.org/10.1080/21501203.2020.1823509
Ejimofor, C. (2022). Screening of different culture media for growth development and morphological characteristics of Aspergillus niger. Journal of Biochemistry International, 9(1), 3744. https://doi.org/10.56557/jobi/2022/v9i37547
Ezeagu, G., Sanusi, U., Ullah, M., & Mohammed, S. (2023). Determination of cellulolytic potentials of Aspergillus species isolated from the central waste dump site of Nile University of Nigeria. Science World Journal, 18(4), 619622. https://doi.org/10.4314/swj.v18i4.13
Fasiku, S., Wakil, S., & Alao, O. (2023). Degradation of lignocellulosic substrates by Pleurotus ostreatus and Lentinus squarrosulus. The Asia Journal of Applied Microbiology, 10(1), 1020. https://doi.org/10.18488/33.v10i1.3354
Helal, G. A., Khalil, R. R., Galal, Y. G., Soliman, S. M., & Abd Elkader, R. S. (2022). Studies on cellulases of some cellulose-degrading soil fungi. Archives of Microbiology, 204(1), 65. https://doi.org/10.1007/s00203-021-02582-2
Moubasher, A. H., Ismail, M. A., Mohamed, R. A., & Al-Bedak, O. A. (2016). Xylanase and cellulase production under extreme conditions in submerged fermentation by some fungi isolated from hypersaline, alkaline lakes of Wadi-El-Natrun, Egypt.
Naher, L., Fatin, S. N., Sheikh, M. A. H., Azeez, L. A., Siddiquee, S., Zain, N. M., & Karim, S. M. R. (2021). Cellulase enzyme production from filamentous fungi Trichoderma reesei and Aspergillus awamori in submerged fermentation with rice straw. Journal of Fungi, 7(10), 868.
Narsale, P., Patel, S., & Acharya, P. (2018). Role of Aspergillus flavus in biodegradation of lignocellulosic waste millet straw and optimization parameters for enzyme hydrolysis and ethanol production under solid-state fermentation. International Journal of Current Microbiology and Applied Sciences, 7(2), 429445. https://doi.org/10.20546/ijcmas.2018.702.055
Okayo, R., Andika, D., Dida, M., KOtuto, G., & Gichimu, B. (2020). Morphological and molecular characterization of toxigenic Aspergillus flavus from groundnut kernels in Kenya. International Journal of Microbiology, 2020, Article 8854718. https://doi.org/10.1155/2020/8854718
Seerat, W., Akram, A., Qureshi, R., Yaseen, G., Mukhtar, T., & Hanif, N. (2022). Light and scanning electron microscopic characterization of aflatoxins-producing Aspergillus flavus in the maize crop. Microscopy Research and Technique, 85(8), 28942903. https://doi.org/10.1002/jemt.24139
Shang, Q., Zhang, F., Zhang, Q., Zhang, W., Li, H., & Li, P. (2025). Research advances on identification and detection methods for aflatoxigenic fungi. Food Frontiers. https://doi.org/10.1002/fft2.70004
Tariq, M. (2017). Production and characterization of phytase from indigenous Aspergillus niger isolates. The Pakistan Journal of Agricultural Sciences, 54(4), 799806. https://doi.org/10.21162/pakjas/17.5517
Weimer, P. J. (2022). Degradation of cellulose and hemicellulose by ruminal microorganisms. Microorganisms, 10(12), 2345.
Xu, J., Xu, X., Liu, Y., Li, H., & Liu, H. (2015). Effect of microbiological inoculants DN1 on lignocellulose degradation during cocomposting of cattle manure with rice straw monitored by FTIR and SEM. Environmental Progress & Sustainable Energy, 35(2), 345351. https://doi.org/10.1002/ep.12222
Copyright (c) 2025 FUDMA JOURNAL OF SCIENCES

This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences