ISOLATION AND CHARACTERIZATION OF PYOCIN S2-PRODUCING LOCAL STRAINS OF Pseudomonas aeruginosa
Abstract
Antibiotic resistance is responsible for 1.27 million deaths globally. Pyocin, from Pseudomonas aeruginosa is a promising candidate against antibiotic-resistant infections. This study aims at isolating pyocin S2-producing local strains of Pseudomonas aeruginosa and investigating the antimicrobial activity of pyocin S2 against Staphylococcus aureus, Staphylococcus sp., Escherichia coli, Salmonella sp., Streptococcus pneumoniae, and Vibrio cholerae. Pseudomonas aeruginosa was isolated from environmental and clinical samples by inoculation on cetrimide agar plates and incubating at 370C for 24 hours. To detect the presence of pyocin S2 gene in the isolates: DNA extraction, polymerase chain reaction (PCR) using primers specific to pyocin S2 gene, and agarose gel electrophoresis was conducted. Using agar well diffusion assay, the antimicrobial activity of pyocin S2-containing Pseudomonas aeruginosa against the aforementioned target pathogens was evaluated. Out of 20 Pseudomonas aeruginosa isolates subjected to PCR, 11 contained pyocin S2 gene. Pyocin S2 from Pseudomonas aeruginosa A1, B2, CL2, CL8 and C11 produced zone of inhibition (ZOI) when tested against Escherichia coli (ZOI = 23.5mm, 17.5mm, 26.0mm, 21.5mm, 29.0mm respectively). However, pyocin S2 from Pseudomonas aeruginosa B3, B10, CL3, B19, CL9 and CL6 did not inhibit Escherichia coli but suppressed the growth of Staphylococcus sp. (ZOI = 21.0mm, 18.5mm, 28.5mm, 23.7mm, 24.5mm and 23.5mm respectively). Also, Pyocin S2 from Pseudomonas aeruginosa C11 suppressed the growth of Vibrio cholerae (ZOI = 30.7mm), but not the other strains. In conclusion, pyocin S2 from indigenous strains of Pseudomonas aeruginosa inhibited the target pathogens. These findings will foster further evaluation of pyocin S2’s antimicrobial potential.
References
Adedeji G. B., Fagade O. E., & Oyelade A. A. (2007). Prevalence of Pseudomonas aeruginosa in Clinical samples and its sensitivity to citrus extract. African Journal of Biomedical Research, 10, 183-187. https://utoronto.scholaris.ca/items/9c6a1c18-a2e4-462b-962b-5f72b682c738
Atanaskovic, I., Mosbahi, K., Sharp, C., Housden, N.G., Kaminska, R., Walker, D., & Kleanthous C. (2020). Targeted killing of Pseudomonas aeruginosa by pyocin G Occurs Via the Hemin Transporter Hur. Journal of Molecular Biology, 432 (13), 3869-3880. https://doi.org/10.1016/j.jmb.2020.04.020 DOI: https://doi.org/10.1016/j.jmb.2020.04.020
Charkhian, H., Soleimannezhadbari, E., Bodaqlouei,A. Lotfollahi, L., Lotfi, H., Yousefi, N., Shojadel, E., & Gholinejad, Z. (2024). Assessment of bacteriocin production by clinical Pseudomonas aeruginosa isolates and their potential as therapeutic agents. Microbial Cell Factories, 23 (175), 1-16. https://link.springer.com/article/10.1186/s12934-024-02450-w DOI: https://doi.org/10.1186/s12934-024-02450-w
Chauhan, A., Jindal, T., Chauhan, A., & Jindal, T. (2020). Biochemical and molecular methods for bacterial identification. Microbiological methods for environment, food and pharmaceutical analysis, 425-468. https://link.springer.com/chapter/10.1007/978-3-030-52024-3_10#citeas DOI: https://doi.org/10.1007/978-3-030-52024-3_10
Cornelissen, A., Ceyssens P., T'Syen, J., Helena Van Praet, H., Noben, J., Shaburova, O. V., Krylov, V. N., Volckaert, G., & Lavigne, R. (2011). The T7-related Pseudomonas putida phage15 displays virion-associated biofilm degradation properties. PLOS ONE, 6(4): e18597. https://doi.org/10.1371/journal.pone.0018597 DOI: https://doi.org/10.1371/journal.pone.0018597
Diggle, S. P., & Whiteley, M. (2020). Microbe Profile: Pseudomonas aeruginosa: opportunistic pathogen and lab rat. Microbiology, 166(1), 30-33. https://doi.org/10.1099/mic.0.000860 DOI: https://doi.org/10.1099/mic.0.000860
Ezeador C.O., Ejikeugwu P.C., Ushie S.N. & Agbakoba N.R. (2020). Isolation, Identification and Prevalence of Pseudomonas aeruginosa Isolates from Clinical and Environmental Sources in Onitsha Metropolis, Anambra State. European Journal of Medical and Health Sciences, 2(2), 1-5. https://ej-med.org/index.php/ejmed/article/view/188 DOI: https://doi.org/10.24018/ejmed.2020.2.2.188
Garca-Curiel, L., Lpez-Cuellar, M., Rodrguez-Hernndez, A. I., Chavarra-Hernndez, N. (2021). Toward understanding the signals of bacteriocin production by Streptococcus spp. and their importance in current applications. World Journal of Microbiology and Biotechnology, 37, 114. https://link.springer.com/article/10.1007/s11274-020-02973-5 DOI: https://doi.org/10.1007/s11274-020-02973-5
Goult, J. D., Van, D. C., Taylor, Y. V., Inns, P. G., Kaminska, R., Vesely, M., Kleanthous, C., & Paci, E. (2024). Structural constraints of pyocin S2 import through the ferripyoverdine receptor FpvAI. PNAS nexus, 3(4), 124. https://doi.org/10.1093/pnasnexus/pgae124 DOI: https://doi.org/10.1093/pnasnexus/pgae124
Haas, D., & Keel, C. (2003). Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annual review of phytopathology, 41(1), 117-153. https://doi.org/10.1146/annurev.phyto.41.052002.095656 DOI: https://doi.org/10.1146/annurev.phyto.41.052002.095656
Heilbronner, S., Krismer, B., Brtz-Oesterhelt, H., & Peschel, A. (2021). The microbiome-shaping roles of bacteriocins. Nature Reviews Microbiology, 19, 726739. https://www.nature.com/articles/s41579-021-00569-w DOI: https://doi.org/10.1038/s41579-021-00569-w
Hols. P., Ledesma-Garca, L., Gabant, P., & Mignolet, J. (2019). Mobilization of microbiota commensals and their bacteriocins for therapeutics. Trends in Microbiology, 27(8), 690-702. https://doi.org/10.1016/j.tim.2019.03.007 DOI: https://doi.org/10.1016/j.tim.2019.03.007
Krell, T., & Matilla, M. A. (2024). Pseudomonas aeruginosa. Trends in Microbiology, 32(2), 216-218. https://doi.org/10.1016/j.tim.2023.11.005 DOI: https://doi.org/10.1016/j.tim.2023.11.005
Meade, E., Slattery, M. A., & Garvey, M. (2020). Bacteriocins, Potent Antimicrobial Peptides and the Fight against Multi Drug Resistant Species: Resistance Is Futile? Antibiotics, 9(1), 32. https://doi.org/10.3390/antibiotics9010032 DOI: https://doi.org/10.3390/antibiotics9010032
Moradali, M. F., Ghods, S., & Rehm, B. H. A. (2017). Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Frontiers in Cellular and Infection Microbiology, 7, 39. https://doi.org/10.3389/fcimb.2017.00039 DOI: https://doi.org/10.3389/fcimb.2017.00039
Naghavi, M., Vollset, S. E., Ikuta, K., & Dekker, Swetschinski, L. R., Gray, A. P., Wool, E. E., & Dekker, M. (2024). Global burden of bacterial antimicrobial resistance 19902021: a systematic analysis with forecasts to 2050 (2024). The Lancet, 404 (10459), 1199-1226. https://doi.org/10.1016/S0140-6736(24)01867-1 DOI: https://doi.org/10.1016/S0140-6736(24)01867-1
Peix, A., Ramrez-Bahena, M. H., & Velzquez, E. (2009). Historical evolution and current status of the taxonomy of genus Pseudomonas. Infection, Genetics and Evolution, 9(6), 1132-1147. https://doi.org/10.1016/j.meegid.2009.08.001 DOI: https://doi.org/10.1016/j.meegid.2009.08.001
Prashanthi, R., Shreevatsa, G.K., Krupalini, S., & Manoj, L. (2021). Isolation, characterization, and molecular identification of soil bacteria showing antibacterial activity against human pathogenic bacteria, Journal of Genetic Engineering and Biotechnology, 19 (1), 1-14 https://doi.org/10.1186/s43141-021-00219-x DOI: https://doi.org/10.1186/s43141-021-00219-x
Scholl, D., Cooley, M., Williams, S. R., Gebhart, D., Martin, D., Bates, A., & Mandrell, R. (2009). An Engineered R-Type PyocinIsa Highly Specific and Sensitive Bactericidal Agent for the Food-Borne Pathogen Escherichia coli O157:H7. Antimicrobial Agents Chemotherapy, 53 (7), 30743080. https://doi.org/10.1128/aac.01660-08 DOI: https://doi.org/10.1128/AAC.01660-08
Sethi, S., Kumar, R., & Gupta S. (2013). Antibiotic production by Microbes isolated from Soil. International Journal of Pharmaceutical Sciences and Research, 4(8), 2967-2973. http://dx.doi.org/10.13040/IJPSR.0975-8232.4(8).2967-73 DOI: https://doi.org/10.13040/IJPSR.0975-8232.4(8).2967-73
Six, A., Mosbahi, K., Barge, M., Kleanthous, C., Evans, T., & Walker, D. (2021). Pyocin efficacy in a murine model of Pseudomonas aeruginosa sepsis. Journal of Antimicrobial Chemotherapy, 76(9), 2317-2324. https://doi.org/10.1093/jac/dkab199 DOI: https://doi.org/10.1093/jac/dkab199
Shehu, R., Wayah, S. B., & Maiangwa, J. (2024). Evaluation of the roles of Mex genes in Antibiotic Resistance of some Strains of Pseudomonas aeruginosa and the use of Antibiotic Combinations to boost their Susceptibility pattern. Dutse Journal of Pure and Applied Sciences, 10(4c), 1-13. https://www.ajol.info/index.php/dujopas/article/view/287331 DOI: https://doi.org/10.4314/dujopas.v10i4c.1
Shoaib, M., Muzammil, I., Hammad, M., Bhutta, Z. A., & Yaseen, I. (2020). A mini-review on commonly used biochemical tests for identification of bacteria. International Journal of Research Publications, 54(1), 1-7. https://doi.org/10.47119/IJRP100541620201224 DOI: https://doi.org/10.47119/IJRP100541620201224
Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., Brinkman, F.S.L., Hufnagle, W. O., Kowalik, D. J., Lagrou, M., Garber, R. L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L. L., Coulter, S. N., Folger, K. R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G. K., & Olson, M. V. (2000). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 406 (6799), 959-964. https://www.nature.com/articles/35023079 DOI: https://doi.org/10.1038/35023079
Suleiman, M., Yaseen, A.R., Ahmed, S., Khan, Z., Irshad, A., Pervaiz, A., Rahman, H. H., & Azhar, M. (2025). Pyocins and Beyond: Exploring the World of Bacteriocins in Pseudomonas aeruginosa. Probiotics and Antimicrobial Proteins, 17, 240-252. https://doi.org/10.1007/s12602-024-10322-3 DOI: https://doi.org/10.1007/s12602-024-10322-3
Wayah, S. B., Abubakar, S., Saleh, J., Alvan, A., & Yado, S. (2024). Isolation and Molecular Identification of Indigenous Bacteriocin-Producing Weissella Cibaria. FUDMA Journal of Sciences, 8(5), 300-306. https://doi.org/10.33003/fjs-2024-0805-2854 DOI: https://doi.org/10.33003/fjs-2024-0805-2854
Wayah, S. B., Tanko, C., Faila, A. A., Yahaya, G., & Aji, R. J. (2024). Unveiling the Genetic Basis of Bacteriocin Production from Enterococcus faecium ATCC 19434. FUDMA Journal of Sciences, 8(3), 297-301. https://doi.org/10.33003/fjs-2024-0803-2512 DOI: https://doi.org/10.33003/fjs-2024-0803-2512
Yilmaz, A. G. (2017). Development of a New Pseudomonas Agar Medium Containing Benzalkonium Chloride in Cetrimide Agar. Food and Nutrition Sciences, 8(04), 367. https://www.scirp.org/html/1-2702111_75431.htm DOI: https://doi.org/10.4236/fns.2017.84025
Zinke M., Schroder G.F., & Lange A. (2022). Major tail proteins of bacteriophages of the Order Caudovirales. Journal of Biological Chemistry, 298 (1), 101472. https://doi.org/10.1016/j.jbc.2021.101472 DOI: https://doi.org/10.1016/j.jbc.2021.101472
Copyright (c) 2025 FUDMA JOURNAL OF SCIENCES

This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences