ISOLATION AND MOLECULAR IDENTIFICATION OF INDIGENOUS BACTERIOCIN-PRODUCING WEISSELLA CIBARIA
Abstract
Globally, over 6.22 million deaths are associated with antibiotic resistance. Bacteriocins, a set of antimicrobial peptides synthesized on the ribosomes, are widely viewed as a potential answer to this issue. This is due to their pore-forming ability and antimicrobial activity against antibiotic-resistant pathogens. The aim of this study is to isolate bacteriocin-producing Weissella cibaria and evaluate its antimicrobial activity against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Salmonella typhi, Proteus mirabilis, Streptococcus sp., Candida sp. and Rhizopus stolonifer. Weissella cibaria man1 was isolated by inoculating deMan Rogosa Sharpe (MRS) broth with small pieces of ripe Mangifera indica (mango), 24-hour incubation at 370C, 10-fold serial dilution and plating on MRS agar. Molecular identification was achieved by DNA extraction, amplification of the 16S rRNA gene through polymerase chain reaction (PCR), agarose gel electrophoresis, gene sequencing, and BLASTN homology searches in the National Center for Biotechnology Information (NCBI). Antimicrobial activity of the bacteriocin was determined by agar well diffusion assay. Mangifera indica (mango) was found to harbor bacteriocin-producing Weissella cibaria man1. The bacteriocin (weissellicin man1) exhibited a broad spectrum of antimicrobial activity. Weissellicin man1 suppressed the growth of several target pathogens (Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella typhi, Proteus mirabilis, Candida sp. and Rhizopus stolonifer) but had no inhibitory action against Escherichia coli, Streptococcus sp., Staphylococcus aureus. In conclusion, weissellicin man1 from Weissella cibaria man1 has a broad-spectrum of antimicrobial action. These findings will facilitate further evaluation of the antimicrobial potency of weissellicin man1.
References
Armbruster, C. E., Mobley, H. L. T., & Pearson, M. M. (2018). Pathogenesis of Proteus mirabilis Infection . EcoSal Plus, 8(1). https://doi.org/10.1128/ECOSALPLUS.ESP-0009-2017/ASSET/4A6CF1F4-CFB3-4656-97DE-6316DA67D1F2/ASSETS/GRAPHIC/ESP-0009-2017_FIG_036.JPG DOI: https://doi.org/10.1128/ecosalplus.esp-0009-2017
Bassetti, M., Vena, A., Croxatto, A., Righi, E., & Guery, B. (2018). How to manage Pseudomonas aeruginosa infections. Drugs in Context, 7, 212527. https://doi.org/10.7573/dic.212527 DOI: https://doi.org/10.7573/dic.212527
Castrejón-Jiménez, N. S., Castrejón-Jiménez, I. A., Rojas-Campos, T. O., Chavarría-Hernández, N., García-Pérez, B. E., & Hernández-González, J. C. (2024). Classification of Bacteriocins from Lactic Acid Bacteria and Their Mode of Action. Antimicrobial Peptides from Lactic Acid Bacteria, 33–65. https://doi.org/10.1007/978-981-97-3413-9_2 DOI: https://doi.org/10.1007/978-981-97-3413-9_2
Chen, C., Chen, X., Jiang, M., Rui, X., Li, W., & Dong, M. (2014). A newly discovered bacteriocin from Weissella hellenica D1501 associated with Chinese Dong fermented meat (Nanx Wudl). Food Control, 42, 116–124. https://doi.org/10.1016/J.FOODCONT.2014.01.031 DOI: https://doi.org/10.1016/j.foodcont.2014.01.031
Chen, C., Rui, X., Lu, Z., Li, W., & Dong, M. (2014). Enhanced shelf-life of tofu by using bacteriocinogenic Weissella hellenica D1501 as bioprotective cultures. Food Control, 46, 203–209. https://doi.org/10.1016/J.FOODCONT.2014.05.004 DOI: https://doi.org/10.1016/j.foodcont.2014.05.004
da Silva Oliveira, W., Teixeira, C. R. V., Mantovani, H. C., Dolabella, S. S., Jain, S., & Barbosa, A. A. T. (2024). Nisin variants: What makes them different and unique? Peptides, 177, 171220. https://doi.org/10.1016/J.PEPTIDES.2024.171220 DOI: https://doi.org/10.1016/j.peptides.2024.171220
Effah, C. Y., Sun, T., Liu, S., & Wu, Y. (2020). Klebsiella pneumoniae: an increasing threat to public health. Annals of Clinical Microbiology and Antimicrobials, 19(1). https://doi.org/10.1186/S12941-019-0343-8 DOI: https://doi.org/10.1186/s12941-019-0343-8
Goh, H. F., & Philip, K. (2015). Purification and Characterization of Bacteriocin Produced by Weissella confusa A3 of Dairy Origin. PLOS ONE, 10(10), e0140434. https://doi.org/10.1371/JOURNAL.PONE.0140434 DOI: https://doi.org/10.1371/journal.pone.0140434
Jain, P. M., Nellikka, A., & Kammara, R. (2024). Understanding bacteriocin heterologous expression: A review. International Journal of Biological Macromolecules, 277, 133916. https://doi.org/10.1016/J.IJBIOMAC.2024.133916 DOI: https://doi.org/10.1016/j.ijbiomac.2024.133916
Kang, C. E., Park, Y. J., Kim, J. H., Lee, N. K., & Paik, H. D. (2023). Probiotic Weissella cibaria displays antibacterial and anti-biofilm effect against cavity-causing Streptococcus mutans. Microbial Pathogenesis, 180, 106151. https://doi.org/10.1016/J.MICPATH.2023.106151 DOI: https://doi.org/10.1016/j.micpath.2023.106151
Kaur, R., & Tiwari, S. K. (2018). Membrane-acting bacteriocin purified from a soil isolate Pediococcus pentosaceus LB44 shows broad host-range. Biochemical and Biophysical Research Communications, 498(4), 810–816. https://doi.org/10.1016/J.BBRC.2018.03.062 DOI: https://doi.org/10.1016/j.bbrc.2018.03.062
Copyright (c) 2024 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences