EFFECT OF SCATTERER DISTRIBUTION ON RANDOM LASER MODEL USING OPTI-FDTD

  • Momoh Hameed Adavize Confluence University of Science and Technology, Osara, Kogi State, Nigeria
  • Mohammed Ahmed Department of Physical Sciences, Niger State Polytechnic, Zungeru.
Keywords: Scatterer Distribution, Random Lasers, Opti-FDTD Simulation, Photonic Bandgap Structures

Abstract

Random lasers, unlike conventional lasers, rely on multiple scattering in a disordered gain medium to achieve optical feedback, making scatterer distribution a crucial factor in their performance. This study investigates the effect of scatterer distribution on random laser performance using the Optical Finite-Difference Time-Domain (Opti-FDTD) simulation tool. The primary objective is to examine how varying scatterer densities—low, medium, and high—affect key lasing parameters, including lasing threshold, emission spectrum, and spatial coherence. Methodologically, the study involves designing photonic bandgap (PBG) structures, systematically varying scatterer arrangements, and analysing the resulting optical behaviours through simulation. Key findings indicate that medium-density scatterer configurations achieve the lowest lasing threshold and the most well-defined emission spectra, offering an optimal balance between light feedback and scattering losses. High-density distributions enhance spatial coherence due to stronger light localization but introduce higher thresholds and spectral overlap, while low-density configurations suffer from weak feedback and reduced performance metrics. The results align with theoretical predictions and experimental data, emphasizing the critical role of scatterer distribution in optimizing random laser designs. These insights hold significant implications for developing more efficient random lasers for applications in imaging, spectroscopy, sensing, and energy-efficient lighting.

References

Abass, N. A., Jawad, M. F., Haider, A. J., & Taha, B. A. (2024). Exploring random laser characteristics in core@ shell nano-scatter centers: trends and opportunities. Optical and Quantum Electronics, 56(12), https://doi.org/10.1007/s11082-024-06881-y

Abdulhameed, A. (2024). ZnO-based random lasing and their sensing applications: a mini-review. Applied Nanoscience, 14(10), 985-995. http://dx.doi.org/10.1007/s13204-024-03059-6

Ahmad, A., Dai, H. T., Feng, S., Chen, Z., Mohamed, Z., Khan, A. A., & Mehvish, D. (2025). Random lasing in liquid crystal: Advances, Challenges, and Future Directions. Journal of Materials Chemistry C. https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc04871g

Aurelio Sarabia-Alonso, J., Vidales Pasos, E., Belamkar, A., Wagner, B., & Mangolini, L. (2025). Titanium nitride nanoparticles as plasmonic nanothermometers. Optics Express, 33(4), 6758-6770. http://dx.doi.org/10.1364/OE.549815

Carvalho, A. J., Gonalves, I. M., Santos, E. P., Pincheira, P. I., Araujo, P. M., de Oliveira, H. P., & Gomes, A. S. (2025). Dye-doped electrospun fiber-based random lasers: The influence of combined gain media. Optical Materials, 159, 116647. https://doi.org/10.1016/j.optmat.2025.116647

Chen, M. H., Xing, D., Su, V. C., Lee, Y. C., Ho, Y. L., & Delaunay, J. J. (2023). GaN ultraviolet laser based on bound states in the continuum (BIC). Advanced Optical Materials, 11(6), 2201906. https://doi.org/10.1002/adom.202201906

Cheng, M. J., Cao, Y. C., Ren, K. F., Zhang, H., & Guo, L. X. (2024). Generalized Lorenz-Mie theory and simulation software for structured light scattering by particles. Frontiers in Physics, 12, 1354223. https://www.frontiersin.org/journals/physics/articles/10.3389/fphy.2024.1354223/full

Dey, A., Pramanik, A., Karmakar, S., Biswas, S., Karthikeyan, J., Messina, F., & Kumbhakar, P. (2025). Black TiO2 Nanoparticles as Plasmonically Active Scatterers for Random Lasing. ACS Applied Nano Materials. https://pubs.acs.org/doi/10.1021/acsanm.4c07082

Du, P., Li, J., Wang, L., Sun, L., Wang, X., Xu, X., & Tang, J. (2021). Efficient and large-area all vacuum-deposited perovskite light-emitting diodes via spatial confinement. Nature Communications, 12(1), 4751. https://www.nature.com/articles/s41467-021-25093-6

Gangwar, R. K., Pathak, A. K., & Kumar, S. (2023). October). Recent progress in photonic crystal devices and their applications. a review. In Photonics (Vol. 10, No. 11, p. 1199). MDPI. https://www.mdpi.com/2304-6732/10/11/1199

Geerthana, S., Sridarshini, T., Syedakbar, S., Nithya, S., Balaji, V. R., Thirumurugan, A., & Dhanabalan, S. S. (2023). A novel 2D-PhC based ring resonator design with flexible structural defects for CWDM applications. Physica Scripta, 98(10), 105975. https://doi.org/10.1088/1402-4896/acfa43

Han, B., Cheng, Q., Tao, Y., Ma, Y., Liang, H., & Ma, R. .. (2024). Spectral manipulations of random fiber lasers: principles, characteristics, and applications. Laser & Photonics Reviews, 18(7), 2400122. https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.202400122

Hayat, A., Jin, Y., Iqbal, N., Zhai, T., & He, S. (2024). Lasers Based on Periodic and Quasiperiodic Planar Feedback Cavities: Designs, Principle, and Potential Applications. Progress in Electromagnetics Research, 126. DOI: http://dx.doi.org/10.2528/PIERM24013106

Ivn R. Roa Gonzlez, Bismarck C. Lima, Pablo I. R. Pincheira, Arthur A. Brum, Antnio M. S. Macdo, Giovani L. Vasconcelos, Leonardo de S. Menezes, Ernesto P. Raposo, Anderson S. L. Gomes, Raman Kashyap (2017). Turbulence Hierarchy in a Random Fibre Laser. https://doi.org/10.48550/arXiv.1707.00946

Kadhim, N. M., Vahed, H., & Soofi, H. (2025). Electrically Pumping of SOI Metamaterial Gain-Stripes Plasmonic Nanolaser with DBR Structure. Plasmonics, 1-28. http://dx.doi.org/10.1007/s11468-024-02700-y

Lippi, G. L. (2021). Amplified Spontaneous Emission in Micro-and Nanolasers. Atoms, 9(1), 6. https://www.mdpi.com/2218-2004/9/1/6

Lu, H., Alkhazragi, O., Wang, Y., Almaymoni, N., Yan, W., Gunawan, W. H., & Ooi, B. S. (2024). Low-coherence semiconductor light sources: devices and applications. npj Nanophotonics, 1(1), 9. https://www.nature.com/articles/s44310-024-00005-w

Meglinski, I., Lopushenko, I., Sdobnov, A., & Bykov, A. (2024). Phase preservation of orbital angular momentum of light in multiple scattering environment. Light: Science & Applications, 13(1), 214. https://www.nature.com/articles/s41377-024-01562-7

Miyan, H., Agrahari, R., Gowre, S. K., Jain, P. K., & Mahto, M. (2023). Photonic crystal based ultrafast and highly sensitive refractive index sensor. IEEE Sensors Journal, 23(14), 15563-15569. DOI: http://dx.doi.org/10.1109/JSEN.2023.3283506

Moon, J., Mehta, Y., Gundogdu, K., So, F., & Gu, Q. (2024). Metalhalide perovskite lasers: Cavity formation and emission characteristics. Advanced Materials, 36(20), 2211284. https://doi.org/10.1002/adma.202211284

Moura, A. L., Pincheira, P. I., de Arajo, C. B., & Gomes, A. S. (2023). Feedback Mechanisms and Modes of Random Lasers. In Lvy Statistics and Spin Glass Behavior in Random Lasers. Jenny Stanford Publishing, (pp. 23-50). https://www.taylorfrancis.com/chapters/edit/10.1201/9781003336181-2/feedback-mechanisms-modes-random-lasers-andr%C3%A9-moura-pablo-pincheira-cid-de-ara%C3%BAjo-anderson-gomes

Ni, D., Spth, M., Klmpfl, F., & Hohmann, M. (2022). Properties and applications of random lasers as emerging light sources and optical sensors: a review. Sensors, 23(1), 247. ; https://doi.org/10.3390/s23010247

Padiyakkuth, N., Thomas, S., Antoine, R., & Kalarikkal, N. (2022). Recent progress and prospects of random lasers using advanced materials. Materials Advances, 3(17), 6687-6706. https://pubs.rsc.org/en/content/articlelanding/2022/ma/d2ma00221c

Silva, L. A., Ferreira, F. S., Oliveira, G. S., Moura, A. L., de Oliveira, R. A., & Reyna, A. S. (2024). Exploring disordered light transport in scattering media to optimize random lasers. The Journal of Physical Chemistry C, 128(12), 5321-5329. https://scholar.google.com.my/citations?user=be52EiEAAAAJ&hl=el

Simon, A., Baudis, Q., Wunenburger, R., & Valier-Brasier, T. (2024). Propagation of elastic waves in correlated dispersions of resonant scatterers. The Journal of the Acoustical Society of America, 155(6), 3627-3638. https://doi.org/10.1121/10.0026233

Vasconcelos, H. C., Meirelles, M., zmente, R., & Santos, L. (2025). Structural Analysis of Erbium-Doped Silica-Based Glass-Ceramics Using Anomalous and Small-Angle X-Ray Scattering. Foundations, 5(1), 5. https://doi.org/10.3390/foundations5010005

Wang, Y., Gong, C., Yang, X., Zhu, T., Zhang, K., Rao, Y. J., & Gong, Y. (2023). Photonic Bandgap Fiber Microlaser with DualBand Emission for Integrated Optical Tagging and Sensing. Laser & Photonics Reviews, 17(6), 2200834. DOI: http://dx.doi.org/10.1002/lpor.202200834

Yang, Q., Wu, Y., Chen, J., Lu, M., Wang, X., Zhang, Z., & Chen, L. (2024). Plasmonic nanomaterial-enhanced fluorescence and Raman sensors: Multifunctional platforms and applications. Coordination Chemistry Reviews, 507, 215768. https://doi.org/10.1016/j.ccr.2024.215768

Zhu, H., He, Z., Wang, J., Zhang, W., Pei, C., Ma, R., & Liu, W. (2024). Microcavity complex lasers: From order to disorder. Annalen der Physik, 536(9), 2400112. https://doi.org/10.1002/andp.202400112

Published
2025-04-30
How to Cite
Adavize, M. H., & Ahmed, M. (2025). EFFECT OF SCATTERER DISTRIBUTION ON RANDOM LASER MODEL USING OPTI-FDTD. FUDMA JOURNAL OF SCIENCES, 9(4), 87 - 98. https://doi.org/10.33003/fjs-2025-0904-3274