SPECTRAL ANALYSIS AND STABILITY OF WAVE EQUATIONS WITH DISPERSIVE NONLINEARITY
Abstract
This study employs spectral methods to capture the behaviour of wave equation with dispersive-nonlinearity. We describe the evolution of hump initial data and track the conservation of the mass and energy functionals. The dispersive-nonlinearity results to solution in an extended Schwartz space via analytic approach. We construct numerical schemes based on spectral methods to simulate soliton interactions under Schwartzian initial data. The computational analysis includes validation of energy and mass conservation to ensure numerical accuracy. Results show that initial data from the Schwartz space decompose into smaller wave-packets due to the weaker dispersive-nonlinearity but leads to wave collapse as a result of stronger dispersive-nonlinearity. We conjecture that the hyperbolic equation with a positive nonlinearity and exponent admits global solutions, while lower exponents lead to localized solutions. A stability analysis of solitonic solutions of the equation is provided via the perturbation approach.
References
Abdelouhab, L., Bona, J.J., Felland, M. and Saut, J-C. (2017). Nonlocal Models for Nonlinear Dispersive Waves. International Journal of Nonlinear Sciences.
Abdelrahman, M. A., Zahran, E. H. and Khater, M. M. (2014). Exact Travelling Wave Solutions for Power Law and Kerr Law N on Linearity Using the Exp(-())-expansion Method. https://www.researchgate.net/publication/276409336.
Ahmad, F., Ekhlass, S. and Al-Rawi, A. (2011). Numerical Solution for Non-linear Korteweg-de Vries Equation Using the Haar Wavelet Method: Iraqi Journal of Statistical Science, (2011).
Bona, J. and Smith, R. (1975) ``The initial-value problem for the Kortewegde Vries equation,'' Phil. Trans. R. Soc. A, 1975.
Felice, D., Barletti, L. and Gandolfi, A. (2016). A Study of a Nonlinear Schrodinger Equation for Optical Fibers CICLO XXIII, SETTORE DISCIPLINARE MAT/07 FISICA MATEMATICA.; https://arxiv.org/abs/1612.00358.
Fuad, S., Jalali, A. and Zahedi, S.A. (2010). Analytical Solutions of Korteweg-de Vries (KdV) Equation: World Academy of Science, Engineering and Technology, 69.
Frauendiener, J., Klein, C. Klein, Muhammad U, and Stoilov, N. (2022). Numerical Study of Davey Stewartson I Systems. Studies in Applied Mathematics Volume 149, Issue 1, p. 76-94. DOI: https://doi.org/10.1111/sapm.12491
Galati, L. and Zheng, S. (2013). Nonlinear Schrodinger equations for Bose-Einstein condensates, pp 5064. DOI: https://doi.org/10.1063/1.4828682
Gao, A., Chunyu, S. and Xinghua, F. (2009). Optimal Control of the Viscous KdV Equation Using an Equivalent Index Method. International Journal of Nonlinear Sciences, 7(3): 1579-1585.
Gigliola, S. (2010). On Dispersive Equations and their Importance in Mathematics.
Griths, D.J. (2004). Introduction to Quantum Mechanics (2nd edition). Prentice Hall. ISBN 978- 0-13-111892-8.
Herbert, K. (2012). Nonlinear Dispersive Equations: Analysis and PDE, 5(1), 145198.
Jairo, V.G. and Jorge, C.B. (2012). Wavelet Petrov-Galerkin Method for the Numerical Solution of the (KdV) Equation: A Journal of Applied Mathematical Sciences 6, 69: 3411-3423.
Jamrud, A. and Sehah, A. (2011). Numerical Solution of The Korteweg de Vries Equation, International Journal of Basic and Applied Sciences IJBAS-IJENS, 11(2).
Jie, S., Jiahong, W. and Juan-Ming, Y. (2007). Eventual periodicity for the KdV equation on a half-line, Journal of Applied Sciences, 227:105-119. DOI: https://doi.org/10.1016/j.physd.2007.02.003
Klein, C. and Saut, J-C. (2021). Nonlinear Dispersive Equations: Inverse Scattering and PDE Methods. Springer, Applied Mathematics. Vol. 209. https://doi.org/10.1007/978-3-030-91427-1 DOI: https://doi.org/10.1007/978-3-030-91427-1
Mark, H. and Mark, A. (2009). Dispersive shock waves , Scholarpedia, 4(11):5562. DOI: https://doi.org/10.4249/scholarpedia.5562
Mehri, S. (2013). Numerical Solutions for the Korteweg de Vries Equations Using Computer Programming. International Journal of Nonlinear Sciences Vol.15, No.1, pp.69-79
Niamh, N. (2019). Some exact solutions methods for the nonlinear Schrodinger equation: Journal of Nonlinear Sciences Vol.27, No.5, pp.100-127
Qian, L., Zhang, D. and Tian, L. (2014). "New Traveling Waves for DNA's Vibrational Dynamics", International Conference on Mechatronics, Electronic, Industrial and Control Engineering (MEIC 2014). DOI: https://doi.org/10.2991/meic-14.2014.142
Sabo, S.S., Dauda, U.M, Babuba S. and Bakari, A.B. (2025). On nonlinear biharmonic dispersive wave equations. Fudma Journal of Science Vol.9, No.1 (2025), https://doi.org/10.33003/fjs-2025-0901-2925. DOI: https://doi.org/10.33003/fjs-2025-0901-2925
Siraj, I., Siraj, H. and Ali, A. (2009). Meshfree method for the numerical solution of the Nonlinear Korteweg-de Vries equation, Journal of Computational and Applied Mathematics, 223: 997-1012. DOI: https://doi.org/10.1016/j.cam.2008.03.039
Taghizadeh, N. and Mirzazadeh, M. (2012). The simplest equation method to study perturbed nonlinear Schrodingers equation with Kerr law nonlinearity. Communications in Nonlinear Science and Numerical Simulation, 17, 14931499. DOI: https://doi.org/10.1016/j.cnsns.2011.09.023
Terence, T. (2006). Nonlinear dispersive equations, volume 106 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC. Local and global analysis.
Wang, J., Sun, F.X, and Cheng, R.J. (2010). Element-free Galerkin method for a kind of Korteweg de Vries (KdV) equation, Chin.Phys. B, 19 (6). DOI: https://doi.org/10.1088/1674-1056/19/6/060201
Yunxi G. (2012). On Existence of Solutions for a Periodic Nonlinear Dispersive Wave Equation. International Journal of Mathematical Analysis, Vol. 6, 2012, no. 58, 2857 2870.
Whitham, G. B. (1974). Linear and Nonlinear Waves, Wiley, 1974.
N. J. Zabusky, M. D. Kruskal, (1965) ``Interaction of solitons in a collisionless plasma and the recurrence of initial states,'' Phys. Rev. Lett. 15 (1965). DOI: https://doi.org/10.1103/PhysRevLett.15.240
Copyright (c) 2025 FUDMA JOURNAL OF SCIENCES

This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences