ON NONLINEAR BIHARMONIC DISPERSIVE WAVE EQUATIONS

  • Sadiq Shehu Sabo Department of Mathematics, Faculty of Science, Federal University, Dutse, Jigawa State
  • Umar Muhammad Dauda Aliko Dangote University of Science & Technology, Wudil
  • Sunday Babuba Department of Mathematics, Faculty of Science, Federal University, Dutse, Jigawa State
  • Abba Ibrahim Bakari Department of Mathematics, Faculty of Science, Federal University, Dutse, Jigawa State
Keywords: Biharmonic, dispersion, nonlinearities, singularities, perturbation, numerics

Abstract

This paper proposes and studies particular nonlinear dispersive biharmonic equation, whose related equations appear in various physical phenomena such as wave propagation in nonlinear media and plasma physics. We chose the power kind of nonlinearity as it is common in these areas. We show that the linear version exhibits strong dispersive behaviour while the nonlinear version reveals possible emergence of singularities for higher degree nonlinearity exponent . Both versions of the equation, linear and nonlinear, were solved analytically where for the latter we use perturbation approach and Fourier transform for the former. A glimpse towards the symmetry analysis of the underlying equations is provided and somewhat insights into the behaviour of the solution is discussed.

Author Biography

Sadiq Shehu Sabo, Department of Mathematics, Faculty of Science, Federal University, Dutse, Jigawa State

An MSc Student. 

References

Ablowitz, M. J. and Clarkson, P. A. (1991). Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511623998

Ablowitz, M.J. and Segur, H. (1981). Solitons and the Inverse Scattering Transform. SIAM. DOI: https://doi.org/10.1137/1.9781611970883

Agrawal, G. P. (2019). Nonlinear Fiber Optics, Sixth Edition, Academic Press, 2019. An imprint of Elsevier. DOI: https://doi.org/10.1016/B978-0-12-817042-7.00018-X

Airy, G.B. (1838). On the Intensity of light in the neighbourhood of a coustic. Transactions of the Cambridge Philosophical Society, 6, 379 - 402.

Bender, C.M. and Orszag, S.A. (1978). Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill.

Bluman, G. and Kumei, S. (1989). Symmetries and Differential Equations. Springer, 1989. DOI: https://doi.org/10.1007/978-1-4757-4307-4

Boussinesq, J. (1872). Thorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. Journal de Mathmatiques Pures et Appliques, 17, 55108.

Cheng, Ma (2023). Normalized solutions for the mixed dispersion nonlinear Schrodinger equations with four types of potentials and mass subcritical growth. AIMS press, Electronic Research Archive Vol. 31 Issue 7, 37593775. DOI: https://doi.org/10.3934/era.2023191

Drazin, P.G. and Johnson, R.S. (1989). Solitons: An Introduction, Cambridge University Press, 1989. DOI: https://doi.org/10.1017/CBO9781139172059

Frauendiener, J., Klein, C. Klein, Muhammad U, and Stoilov, N. (2022). Numerical Study of Davey Stewartson I Systems. Studies in Applied Mathematics Volume 149, Issue 1, p. 76-94. DOI: https://doi.org/10.1111/sapm.12491

Klein, C. and Saut, J.C. (2022). Nonlinear Dispersive Equations: Inverse Scattering and PDE Methods. Springer, Applied Mathematics, Vol. 209. DOI: https://doi.org/10.1007/978-3-030-91427-1

Klein, O., & Gordon, W. (1926). ddot{U}ber die neue relativistiche Wellenmechanik des Elektrons. Zeitschrift fddot{u}r Physik, 37 (12), 895-906. DOI: https://doi.org/10.1007/BF01397481

Korteweg, D. J., & de Vries, G. (1895). On the Change of Form of Long Waves in a Rectangular Canal, and on a New Type of Long Stationary Waves. Philosophical Magazine Series 5, 39(240), 422443. DOI: https://doi.org/10.1080/14786449508620739

Lamb, G. L. Jr. (1980). Elements of soliton Theory. Wiley-Interscience. ISBN: 978-0471057129.

LeVeque, R.J. (2007). Finite Difference Methods for Ordinary and Partial Differential Equations, SIAM, 2007. DOI: https://doi.org/10.1137/1.9780898717839

Pan, K., Li, J., Li, Z. and Fu, K. (2023), Fourth-order compact finite difference schemes for biharmonic equations, SIAM J. Sci. Comput., 2023.

Papanicolaou, G.C., Sulem, C., Sulem, P.L., and Wang, X.P. (1991). "Singular solutions of the Zakharov equations for Langmuir turbulence", Phys. Fluids B 3, 969980. DOI: https://doi.org/10.1063/1.859852

Stokes, G.G. (1847). On the theory of oscillatory waves. Transactions of the Cambridge Philosophical Society, 8, 441- 455.

Sulem, C., & Sulem, P. L. (1999). "The Nonlinear Schrdinger equation: Self-focusing and wave collapse". Springer 1999.

Trefethen, L.N. (2000). Spectral Methods in MATLAB, SIAM, 2000. DOI: https://doi.org/10.1137/1.9780898719598

Whitham, A. (1974). Linear and Nonlinear Waves, Wiley-Interscience.

Whitham, G.B. (1999). Linear and Nonlinear Waves, Wiley-Interscience, 1999. DOI: https://doi.org/10.1002/9781118032954

Whitham, G.B. (2011). Linear and Nonlinear Waves, John Wiley & Sons, 2011.

Zabusky, N.J. and Kruskal, M.D. (1965). Interaction of Solitons in a Collision-less Plasma and the Recurrence of Initial States, Physical Review Letters, 1965. DOI: https://doi.org/10.1103/PhysRevLett.15.240

Zakharov, V.E., & Shabat, A.B. (1972). Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Soviet Physics JETP, 34(1), 62-69.

Published
2025-01-31
How to Cite
Sabo, S. S., Dauda, U. M., Babuba, S., & Bakari, A. I. (2025). ON NONLINEAR BIHARMONIC DISPERSIVE WAVE EQUATIONS. FUDMA JOURNAL OF SCIENCES, 9(1), 87 - 100. https://doi.org/10.33003/fjs-2025-0901-2925