ON NONLINEAR BIHARMONIC DISPERSIVE WAVE EQUATIONS

Authors

  • Sadiq Shehu Sabo
    Department of Mathematics, Faculty of Science, Federal University, Dutse, Jigawa State
  • Umar Muhammad Dauda
    Aliko Dangote University of Science & Technology, Wudil
  • Sunday Babuba
    Department of Mathematics, Faculty of Science, Federal University, Dutse, Jigawa State
  • Abba Ibrahim Bakari
    Department of Mathematics, Faculty of Science, Federal University, Dutse, Jigawa State

Keywords:

Biharmonic, dispersion, nonlinearities, singularities, perturbation, numerics

Abstract

This paper proposes and studies particular nonlinear dispersive biharmonic equation, whose related equations appear in various physical phenomena such as wave propagation in nonlinear media and plasma physics. We chose the power kind of nonlinearity as it is common in these areas. We show that the linear version exhibits strong dispersive behaviour while the nonlinear version reveals possible emergence of singularities for higher degree nonlinearity exponent . Both versions of the equation, linear and nonlinear, were solved analytically where for the latter we use perturbation approach and Fourier transform for the former. A glimpse towards the symmetry analysis of the underlying equations is provided and somewhat insights into the behaviour of the solution is discussed.

Author Biography

Sadiq Shehu Sabo

An MSc Student. 

Dimensions

Ablowitz, M. J. and Clarkson, P. A. (1991). Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press.

Ablowitz, M.J. and Segur, H. (1981). Solitons and the Inverse Scattering Transform. SIAM.

Agrawal, G. P. (2019). Nonlinear Fiber Optics, Sixth Edition, Academic Press, 2019. An imprint of Elsevier.

Airy, G.B. (1838). On the Intensity of light in the neighbourhood of a coustic. Transactions of the Cambridge Philosophical Society, 6, 379 - 402.

Bender, C.M. and Orszag, S.A. (1978). Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill.

Bluman, G. and Kumei, S. (1989). Symmetries and Differential Equations. Springer, 1989.

Boussinesq, J. (1872). Thorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. Journal de Mathmatiques Pures et Appliques, 17, 55108.

Cheng, Ma (2023). Normalized solutions for the mixed dispersion nonlinear Schrodinger equations with four types of potentials and mass subcritical growth. AIMS press, Electronic Research Archive Vol. 31 Issue 7, 37593775.

Drazin, P.G. and Johnson, R.S. (1989). Solitons: An Introduction, Cambridge University Press, 1989.

Frauendiener, J., Klein, C. Klein, Muhammad U, and Stoilov, N. (2022). Numerical Study of Davey Stewartson I Systems. Studies in Applied Mathematics Volume 149, Issue 1, p. 76-94.

Klein, C. and Saut, J.C. (2022). Nonlinear Dispersive Equations: Inverse Scattering and PDE Methods. Springer, Applied Mathematics, Vol. 209.

Klein, O., & Gordon, W. (1926). ddot{U}ber die neue relativistiche Wellenmechanik des Elektrons. Zeitschrift fddot{u}r Physik, 37 (12), 895-906.

Korteweg, D. J., & de Vries, G. (1895). On the Change of Form of Long Waves in a Rectangular Canal, and on a New Type of Long Stationary Waves. Philosophical Magazine Series 5, 39(240), 422443.

Lamb, G. L. Jr. (1980). Elements of soliton Theory. Wiley-Interscience. ISBN: 978-0471057129.

LeVeque, R.J. (2007). Finite Difference Methods for Ordinary and Partial Differential Equations, SIAM, 2007.

Pan, K., Li, J., Li, Z. and Fu, K. (2023), Fourth-order compact finite difference schemes for biharmonic equations, SIAM J. Sci. Comput., 2023.

Papanicolaou, G.C., Sulem, C., Sulem, P.L., and Wang, X.P. (1991). "Singular solutions of the Zakharov equations for Langmuir turbulence", Phys. Fluids B 3, 969980.

Stokes, G.G. (1847). On the theory of oscillatory waves. Transactions of the Cambridge Philosophical Society, 8, 441- 455.

Sulem, C., & Sulem, P. L. (1999). "The Nonlinear Schrdinger equation: Self-focusing and wave collapse". Springer 1999.

Trefethen, L.N. (2000). Spectral Methods in MATLAB, SIAM, 2000.

Whitham, A. (1974). Linear and Nonlinear Waves, Wiley-Interscience.

Whitham, G.B. (1999). Linear and Nonlinear Waves, Wiley-Interscience, 1999.

Whitham, G.B. (2011). Linear and Nonlinear Waves, John Wiley & Sons, 2011.

Zabusky, N.J. and Kruskal, M.D. (1965). Interaction of Solitons in a Collision-less Plasma and the Recurrence of Initial States, Physical Review Letters, 1965.

Zakharov, V.E., & Shabat, A.B. (1972). Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Soviet Physics JETP, 34(1), 62-69.

Published

31-01-2025

How to Cite

ON NONLINEAR BIHARMONIC DISPERSIVE WAVE EQUATIONS. (2025). FUDMA JOURNAL OF SCIENCES, 9(1), 87-100. https://doi.org/10.33003/fjs-2025-0901-2925

How to Cite

ON NONLINEAR BIHARMONIC DISPERSIVE WAVE EQUATIONS. (2025). FUDMA JOURNAL OF SCIENCES, 9(1), 87-100. https://doi.org/10.33003/fjs-2025-0901-2925

Most read articles by the same author(s)