SPECTRAL CHARACTERIZATION AND EFFICACY OF BIOGENIC SYNTHESIZED SILVER NANOPARTICLES USING SECONDARY METABOLITE OF PSEUDOMONAS AERUGINOSA ON SELECTED PATHOGENS

Authors

  • Frank Olakunle Otuyelu University of Ilorin, Nigeria
  • Toyin Olayemi Agbabiaka University of Ilorin
  • Ridwan Tope Azeez University of Ilorin
  • Ruth Bukola Tomilayo University of Ilorin
  • Bashirat Abdulkareem Sa'ad University of Ilorin
  • Suad Oluwakemi Katibi University of Ilorin

DOI:

https://doi.org/10.33003/fjs-2025-0902-3189

Keywords:

Pathogens, Resistance, Secondary metabolite, Silver nanoparticles, Susceptible

Abstract

Bacteria resistance to conventional antibiotics has made researchers look for other possible alternatives which include the use of nanoparticles, plant extracts, production of bacteriocin, organic acids etc. This study is focused on biosynthesizing AgNPs using secondary metabolite of Pseudomonas aeruginosa, characterize and evaluate its effectiveness against selected bacteria pathogens. FTIR, UV-visible spectroscopy, TEM analyses were used to characterize, agar disk diffusion method was employed for antibacterial sssay.  Bacterial pathogens used include Escherichia coli, Serratia liquefaciens, Bacillus subtilis, Pseudomonas aeruginosa, Citrobacter freundii, Staphylococcus aureus, Klebsiella pneumoniae, Enterobacter cloacae, Yersinia enterica and K. oxytoca. Colour change to dark brown indicates AgNPs synthesis. UV-vis spectrophotometer revealed peak absorbance 2.082 A at 410 nm, FTIR analysis revealed highest peak at 3458.58. Synthesized AgNPs size obtained ranged between 10.02 nm and 1.47 nm. Antibacterial assay result showed that AgNPs was effective against seven pathogens with P. aeruginosa (21.7 mm) as the most susceptible. E. coli and K. oxytoca were the most resistant with susceptibility to one antibiotic each while E. coli showed little susceptibility to AgNPs. All isolates showed resistance to more than half of the antibiotics used hence making them multidrug-resistant strains. In this study, it was observed that AgNPs were as effective as the antibiotics used.

References

Abubakar, M. S., Yazid, A. B., Sabo, A. A., Ibrahim, A., Aliyu, A. U. and Saleh, M. (2023). Effects of textile wastewater pre-treatment on lignocellulosic biomass for solid-state anaerobic digestion. FUDMA Journal of Sciences, 7(1): 156-164.

Ajeej, A., Thanikal, J. V., Narayanan, C. M. and Kumar, R. S. (2015). An overview of bio augmentation of methane by anaerobic co-digestion of municipal sludge along with microalgae and waste paper. Renewable and Sustainable Energy Reviews, 50: 270-276.

Ajien, A., Idris, J., Md Sofwan, N., Husen, R. and Seli, H. (2023). Coconut shell and husk biochar: A review of production and activation technology, economic, financial aspect and application. Waste Management & Research, 41(1): 37-51.

Ambaye, T. G., Rene, E. R., Nizami, A. S., Dupont, C., Vaccari, M. and van Hullebusch, E. D. (2021). Beneficial role of biochar addition on the anaerobic digestion of food waste: a systematic and critical review of the operational parameters and mechanisms. Journal of Environmental Management, 290: 112537.

Begum, S., Anupoju, G. R. and Eshtiaghi, N. (2021). Anaerobic co-digestion of food waste and cardboard in different mixing ratios: Impact of ultrasound pre-treatment on soluble organic matter and biogas generation potential at varying food to inoculum ratios. Biochemical Engineering Journal, 166: 107853.

Cai, Y., Shen, X., Meng, X., Zheng, Z., Usman, M., Hu, K. and Zhao, X. (2023). Syntrophic consortium with the aid of coconut shell-derived biochar enhances methane recovery from ammonia-inhibited anaerobic digestion. Science of the Total Environment, 872: 162182.

Cheesbrough, M. (2006). District laboratory practice in tropical countries, part 2. Cambridge university press. Pp 86-110

Chiappero, M., Norouzi, O., Hu, M., Dcremichelis, F., Berruti, F., Di Maria, F. and Fiore, S. (2020). Review of biochar role as additive in anaerobic digestion processes. Renewable and Sustainable Energy Reviews, 131, 110037.

Chinwe, O. G. (2024). Decomposition Processes of Household Waste via Small Scale Biogas Technology: A Case Study of Nigeria.

Devi, P. and Eskicioglu, C. (2024). Effects of biochar on anaerobic digestion: a review. Environmental Chemistry Letters, 1-42.

Dudek, M., wiechowski, K., Manczarski, P., Koziel, J. A. and Biaowiec, A. (2019). The effect of biochar addition on the biogas production kinetics from the anaerobic digestion of brewers spent grain. Energies, 12(8): 1518.

El Ibrahimi, M., Khay, I., El Maakoul, A. and Bakhouya, M. (2021). Food waste treatment through anaerobic co-digestion: Effects of mixing intensity on the thermohydraulic performance and methane production of a liquid recirculation digester. Process Safety and Environmental Protection, 147: 1171-1184.

Html, S. T., Wang, Z., Liu, Z., Zhang, Y. and Si, B. (2020). The role of biochar to enhance anaerobic digestion: a review. Journal of Renewable Materials, 8(9): 1033-1052.

Ighalo, J. O., Conradie, J., Ohoro, C. R., Amaku, J. F., Oyedotun, K. O., Maxakato, N. W. and Adegoke, K. A. (2023). Biochar from coconut residues: an overview of production, properties, and applications. Industrial Crops and Products, 204: 117300.

Ihoeghian, N. A., Amenaghawon, A. N., Ogofure, A., Oshoma, C. E., Ajieh, M. U., Erhunmwunse, N. O. and Martin, A. D. (2023). Biochar-facilitated batch co-digestion of food waste and cattle rumen content: An assessment of process stability, kinetic studies, and pathogen fate. Green Technologies and Sustainability, 1(3): 100035.

Induchoodan, T. G., Haq, I. and Kalamdhad, A. S. (2022). Factors affecting anaerobic digestion for biogas production: A review. Advanced organic waste management: 223-233.

Jansson, A. T., Patinvoh, R. J., Taherzadeh, M. J. and Horvth, I. S. (2020). Effect of organic compounds on dry anaerobic digestion of food and paper industry wastes. Bioengineered, 11(1): 502-509.

Kalidasan, B., Pandey, A. K., Saidur, R., Kothari, R., Sharma, K. and Tyagi, V. V. (2023). Eco-friendly coconut shell biochar based nano-inclusion for sustainable energy storage of binary eutectic salt hydrate phase change materials. Solar Energy Materials and Solar Cells, 262: 112534.

Kaltum, U. M., Hafsah, M. A., Ruwa, A. M. R., Grace, A. F., Ali, A. A., Adeboye, M. M., Musa, I., Falmta, B. M. D., Usman, A. B., Hauwa, M. A., Hosea, S. H. and Abubakar, B. T. (2022). Comparative evaluation on the potentials of sheep rumen contents for biogas generation. FUDMA Journal of Sciences, 6(2): 292-296.

Khalid, Z. B., Siddique, M. N. I., Nayeem, A., Adyel, T. M., Ismail, S. B. and Ibrahim, M. Z. (2021). Biochar application as sustainable precursors for enhanced anaerobic digestion: A systematic review. Journal of Environmental Chemical Engineering, 9(4): 105489.

Khalid, Z. B., Siddique, M. N. I., Nayeem, A., Adyel, T. M., Ismail, S. B. and Ibrahim, M. Z. (2021). Biochar application as sustainable precursors for enhanced anaerobic digestion: A systematic review. Journal of Environmental Chemical Engineering, 9(4): 105489.

Li, W., Siddhu, M. A. H., Amin, F. R., He, Y., Zhang, R., Liu, G. and Chen, C. (2018). Methane production through anaerobic co-digestion of sheep dung and waste paper. Energy Conversion and Management, 156: 279-287.

Li, Y., Chen, Y. and Wu, J. (2019). Enhancement of methane production in anaerobic digestion process: A review. Applied energy, 240: 120-137.

Li, Y., Hua, D., Xu, H., Jin, F., Mu, H., Zhao, Y. and Fang, X. (2020). Acidogenic and methanogenic properties of corn straw silage: regulation and microbial analysis of two-phase anaerobic digestion. Bioresource technology, 307: 123180.

Ma, J., Chen, F., Xue, S., Pan, J., Khoshnevisan, B., Yang, Y. and Qiu, L. (2021). Improving anaerobic digestion of chicken manure under optimized biochar supplementation strategies. Bioresource Technology, 325, 124697.

Manga, M., Aragn-Briceo, C., Boutikos, P., Semiyaga, S., Olabinjo, O. and Muoghalu, C. C. (2023). Biochar and Its Potential Application for the Improvement of the Anaerobic Digestion Process: A Critical Review. Energies, 16(10): 4051.

Mansor, A. M., Lim, J. S., Ani, N. S., Hashim, H. and Ho, W. S. (2019). Characteristics of cellulose, hemicellulose and lignin of MD2 pineapple biomass. Chemical Engineering Transactions, 72: 80-83

Ngo, T., Ranlaul, K. and Ball, A. S. (2024). Enhanced methane production during the anaerobic digestion of chicken manure through the addition of pristine and recovered biochar. Cleaner Waste Systems, 7: 100126.

Ngo, T., Shahsavari, E., Shah, K., Surapaneni, A. and Ball, A. S. (2022). Improving bioenergy production in anaerobic digestion systems utilising chicken manure via pyrolysed biochar additives: A review. Fuel, 316: 123374.

Ofon, U. A., Ndubuisi-Nnaji, U. U., Shaibu, S. E., Fatunla, O. K. and Offiong, N. A. O. (2022). Recycling anaerobic digestate enhances the co-digestion potential of agro-industrial residues: influence of different digestates as sources of microbial inoculum. Environmental Technology, 43(28): 4472-4483.

Salim, A. A., Zubairu, S. M., Ismail, M., Ahmed, A., Hassan, A. W., Abdulkadir, J. and Ityonum, B. I. (2023). Exploring the potentials of cereal food waste in anaerobic digestion. FUDMA Journal of Sciences, 7(6): 240-243.

Shen, R., Jing, Y., Feng, J., Luo, J., Yu, J. and Zhao, L. (2020). Performance of enhanced anaerobic digestion with different pyrolysis biochars and microbial communities. Bioresource technology, 296: 122354.

Shen, R., Jing, Y., Feng, J., Luo, J., Yu, J. and Zhao, L. (2020). Performance of enhanced anaerobic digestion with different pyrolysis biochars and microbial communities. Bioresource Technology, 296: 122354.

Shi, Y., Liu, M., Li, J., Yao, Y., Tang, J. and Niu, Q. (2022). The dosage-effect of biochar on anaerobic digestion under the suppression of oily sludge: Performance variation, microbial community succession and potential detoxification mechanisms. Journal of Hazardous Materials, 421: 126819.

Siedlecka, E. M., Kumirska, J., Osowski, T., Glamowski, P., Golebiowski, M., Gajdus, J., Kaczynski, Z. and Stepnowski, P. (2008). Determination of volatile fatty acids in environmental aqueous sample. Journal of Environmental Studies, 17(3): 351-356.

Wang, C., Li, L., Shi, J. and Jin, H. (2021). Biochar production by coconut shell gasification in supercritical water and evolution of its porous structure. Journal of Analytical and Applied Pyrolysis, 156: 105151.

Wang, Z., Guo, Y., Wang, W., Chen, L., Sun, Y., Xing, T. and Kong, X. (2021). Effect of biochar addition on the microbial community and methane production in the rapid degradation process of corn straw. Energies, 14: 2223-2236.

Xin, Y., Liu, W., Chen, C. and Wang, D. (2022). Effect of Biochar on Methane Production and Structural Characteristics in the Anaerobic Digestion (AD) of Rape Straw. BioResources, 17(4): 5634-5644

Xu, Y. and He, Z. (2021). Enhanced volatile fatty acids accumulation in anaerobic digestion through arresting methanogenesis by using hydrogen peroxide. Water Environment Research, 93(10), 2051-2059.

Zhang, B., Zhou, S., Zhou, L., Wen, J. and Yuan, Y. (2019). Pyrolysis temperature-dependent electron transfer capacities of dissolved organic matter derived from wheat straw biochar. Science of the Total Environment, 696:133895

Zhang, C., Yang, R., Sun, M., Zhang, S., He, M., Tsang, D. C. and Luo, G. (2022). Wood waste biochar promoted anaerobic digestion of food waste: focusing on the characteristics of biochar and microbial community analysis. Biochar, 4(1): 62.

Zhao, S., Chen, W., Luo, W., Fang, H., Lv, H., Liu, R. and Niu, Q. (2021). Anaerobic co-digestion of chicken manure and cardboard waste: Focusing on methane production, microbial community analysis and energy evaluation. Bioresource Technology, 321: 124429.

Zhao, S., Chen, W., Luo, W., Fang, H., Lv, H., Liu, R. and Niu, Q. (2021). Anaerobic co-digestion of chicken manure and cardboard waste: Focusing on methane production, microbial community analysis and energy evaluation. Bioresource Technology, 321: 124429

Zobeashia, S. T., Abioye, P. O., Ijah, U. J. J. and Oyewole, O. A. (2021). The impact of physicochemical parameter in anaerobic digestion of organic wastes. Journal of Engineering Science, 27: 61-69.

Published

2025-02-28

How to Cite

Otuyelu, F. O., Agbabiaka, T. O., Azeez, R. T., Tomilayo, R. B., Sa’ad, B. A., & Katibi, S. O. (2025). SPECTRAL CHARACTERIZATION AND EFFICACY OF BIOGENIC SYNTHESIZED SILVER NANOPARTICLES USING SECONDARY METABOLITE OF PSEUDOMONAS AERUGINOSA ON SELECTED PATHOGENS. FUDMA JOURNAL OF SCIENCES, 9(2), 242 - 247. https://doi.org/10.33003/fjs-2025-0902-3189