SPECTRAL CHARACTERIZATION AND EFFICACY OF BIOGENIC SYNTHESIZED SILVER NANOPARTICLES USING SECONDARY METABOLITE OF PSEUDOMONAS AERUGINOSA ON SELECTED PATHOGENS
Abstract
Bacteria resistance to conventional antibiotics has made researchers look for other possible alternatives which include the use of nanoparticles, plant extracts, production of bacteriocin, organic acids etc. This study is focused on biosynthesizing AgNPs using secondary metabolite of Pseudomonas aeruginosa, characterize and evaluate its effectiveness against selected bacteria pathogens. FTIR, UV-visible spectroscopy, TEM analyses were used to characterize, agar disk diffusion method was employed for antibacterial sssay. Bacterial pathogens used include Escherichia coli, Serratia liquefaciens, Bacillus subtilis, Pseudomonas aeruginosa, Citrobacter freundii, Staphylococcus aureus, Klebsiella pneumoniae, Enterobacter cloacae, Yersinia enterica and K. oxytoca. Colour change to dark brown indicates AgNPs synthesis. UV-vis spectrophotometer revealed peak absorbance 2.082 A at 410 nm, FTIR analysis revealed highest peak at 3458.58. Synthesized AgNPs size obtained ranged between 10.02 nm and 1.47 nm. Antibacterial assay result showed that AgNPs was effective against seven pathogens with P. aeruginosa (21.7 mm) as the most susceptible. E. coli and K. oxytoca were the most resistant with susceptibility to one antibiotic each while E. coli showed little susceptibility to AgNPs. All isolates showed resistance to more than half of the antibiotics used hence making them multidrug-resistant strains. In this study, it was observed that AgNPs were as effective as the antibiotics used.
References
Abeer Mohammed A.B., Abd Elhamid M.M., Khalil M.K.M., Ali A.S., Abbas R.N. (2022). The potential activity of biosynthesized silver nanoparticles of Pseudomonas aeruginosa as an antibacterial agent against multidrug-resistant isolates from intensive care unit and anticancer agent. Environmental Sciences Europe, 34(1): 109. https://doi.org/10.1186/s12302-022-00684-2
Agbabiaka T.O., Otuyelu F.O., Abdulsalam Z.B., Mustapha S. (2024). Effect of antioxidant protection against ultraviolet radiation and antibiotic susceptibility of Escherichia coli. Ife Journal of Science, 26(2): 235-244. https://doi.org/10.4314/ijs.v26i2.2
Ahmad A., Mukherjee P., Senapati S., Mandal D., Khan M.I., Kumar R., Sastry M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and surfaces B: Biointerfaces, 28(4): 313-8. https://doi.org/10.1016/S0927-7765(02)00174-1
Akther T., Khan M.S., Hemalatha S. (2020). Biosynthesis of silver nanoparticles via fungal cell filtrate and their anti-quorum sensing against Pseudomonas aeruginosa. Journal of Environmental Chemical Engineering, 8(6): 104365. https://doi.org/10.1016/j.jece.2020.104365
Al-Asbahi M.G., Al-Ofiry B.A., Saad F.A., Alnehia A., Al-Gunaid M.Q. (2024). Silver nanoparticles biosynthesis using mixture of Lactobacillus sp. and Bacillus sp. growth and their antibacterial activity. Scientific Reports, 14(1): 10224. https://doi.org/10.1038/s41598-024-59936-1
Alnahari H., Al-Hammadi A.H., Al-Sharabi A., Alnehia A., Al-Odayni A.B. (2023). Structural, morphological, optical, and antibacterial properties of CuOFe2O3 MgOCuFe2O4 nanocomposite synthesized via auto-combustion route. J. Mater. Sci. Mater. Electron. 34(7): 112. https://doi.org/10.1007/s10854-023-10120-7
Bhardwaj B., Singh P., Kumar A., Kumar S., Budhwar V. (2020). Eco-friendly greener synthesis of nanoparticles. Advanced Pharmaceutical Bulletin, 10(4): 566. https://doi.org/10.34172/apb.2020.067
Boroumand S., Safari M., Shaabani E., Shirzad M., Faridi-Majidi R. (2019). Selenium nanoparticles: synthesis, characterization and study of their cytotoxicity, antioxidant and antibacterial activity. Materials Research Express, 6(8): 0850d8. https://doi.org/10.1088/2053-1591/ab2558
Chernousova S., Epple M. (2018). Silver as antibacterial agent: ion, nanoparticle, and metal. Angewandte Chemie International Edition, 52(6): 1636-1653. https://doi.org/10.1002/anie.201205923
Chirgadze Y.N., Fedorov O.V., Trushina N.P. (1975). Estimation of amino acid residue side-chain absorption in the infrared spectra of protein solutions in heavy water. Biopolymers, 14: 679694. https://doi.org/10.1002/bip.1975.360140402
Chitra K., Annadurai G. (2014). Antibacterial activity of pHdependent biosynthesized silver nanoparticles against clinical pathogen. Biomed Research International, 2014(1): 725165. https://doi.org/10.1155/2014/725165
Dakal T.C., Kumar A., Majumdar R.S., Yadav V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology, 7: 1831. https://doi.org/10.3389/fmicb.2016.01831
Debnath G., Das P., Saha A.K. (2019). Green synthesis of silver nanoparticles using mushroom extract of Pleurotus giganteus: characterization, antimicrobial, and -amylase inhibitory activity. Bionanoscience, 9: 611-619. https://doi.org/10.1007/s12668-019-00650-y
Fang X., Wang Y., Wang Z., Jiang Z., Dong M. (2019). Microorganism assisted synthesized nanoparticles for catalytic applications. Energies, 12: 190 https://doi.org/10.3390/en12010190
Franzolin M.R., Courrol D.D., Silva F.R., Courrol L.C. (2022). Antimicrobial activity of silver and gold nanoparticles prepared by photoreduction process with leaves and fruit extracts of Plinia cauliflora and Punica granatum. Molecules, 27(20): 116. https://doi.org/10.3390/molecules27206860
Genc, N., Yildiz, I., Chaoui, R., Erenler, R., Temiz, C., & Elmastas, M. (2020). Biosynthesis, characterization and antioxidant activity of oleuropein-mediated silver nanoparticles. Inorganic and Nano-Metal Chemistry, 51(3), 411419. https://doi.org/10.1080/24701556.2020.1792495
Gurunathan S., Park J.H., Han J.W., Kim J.H. (2015). Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by Bacillus tequilensis and Calocybe indica in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer therapy. Int J Nanomed, 10: 42034223. https://doi.org/10.2147/IJN.S83953
Hameed S., Wang Y., Zhao L., Xie L., Ying Y. (2020). Shape-dependent significant physical mutilation and antibacterial mechanisms of gold nanoparticles against foodborne bacterial pathogens (Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus) at lower concentrations. Materials Science and Engineering: C, 108: 110338. https://doi.org/10.1016/j.msec.2019.110338
Herrera Prez G.M., Castellano L.E., Ramrez Valdespino C.A. (2024). Trichoderma and mycosynthesis of metal nanoparticles: role of their secondary metabolites. Journal of Fungi, 10(7): 443. https://doi.org/10.3390/jof10070443
Ji H., Zhou S., Fu Y., Wang Y., Mi J., Lu T., L C. (2020). Size-controllable preparation and antibacterial mechanism of thermo-responsive copolymer-stabilized silver nanoparticles with high antimicrobial activity. Materials Science and Engineering: C, 110: 110735. https://doi.org/10.1016/j.msec.2020.110735
John M.S., Nagoth J.A., Ramasamy K.P., Mancini A., Giuli G., Natalello A., Ballarini P., Miceli C., Pucciarelli S. (2020). Synthesis of bioactive silver nanoparticles by a Pseudomonas strain associated with the antarctic psychrophilic protozoon Euplotes focardii. Marine drugs,18(1): 38. https://doi.org/10.3390/md18010038
Jorgensen J.H., Turnidge J.D. (2015). Susceptibility test methods: dilution and disk diffusion methods. Manual of clinical microbiology, pp 1253-1273. https://doi.org/10.1128/9781555817381.ch71
Karnwal A., Kumar Sachan R.S., Devgon I., Devgon J., Pant G., Panchpuri M., Ahmad A., Alshammari M.B., Hossain K., Kumar G. (2024). Gold nanoparticles in nanobiotechnology: from synthesis to biosensing applications. ACS omega, 9(28), 29966-29982. https://doi.org/10.1021/acsomega.3c10352
Mathivanan K., Selva R., Chandirika J.U., Govindarajan R.K., Srinivasan R., Annadurai G., Duc P.A. (2019). Biologically synthesized silver nanoparticles against pathogenic bacteria: Synthesis, calcination and characterization. Biocatal. Agric. Biotechnol, 22: 101373. https://doi.org/10.1016/j.bcab.2019.101373
Moitra P., Alafeef M., Dighe K., Frieman M., Pan D. (2020) Selective Naked-Eye Detection of SARS-CoV-2 Mediated by N Gene Targeted Antisense Oligonucleotide Capped Plasmonic Nanoparticles. ACS Nano 14: 76177627 https://doi.org/10.1021/acsnano.0c03822
More P.R., Pandit S., Filippis A., Franci G., Mijakovic I., Galdiero M. (2023). Silver Nanoparticles: Bactericidal and Mechanistic Approach against Drug Resistant Pathogens. Microorganisms, 11(2): 369. https://doi.org/10.3390/microorganisms11020369
Nandiyanto A.B.D., Oktiani R., Ragadhita R. (2019). How to read and interpret FTIR spectroscope of organic material. Indones. J. Sci. Technol. 4(1): 97118. https://ejournal.kjpupi.id/index.php/ijost/article/view/189
Otuyelu F.O., Adebisi O.O., Omojasola P.F., Azeez R.T., Abdulsalam Z.B., Daramola O.B., Akinsanola B.A. (2025). Characterization of Silver Nanoparticles Biosynthesized using Keratinase from Aspergillus species and their Antibacterial Activity against Clinical Pathogens. BioNanoSci. 15: 136. https://doi.org/10.1007/s12668-024-01770-w
Patil M.P., Kang M.J., Niyonizigiye I., Singh A., Kim J.O., Seo Y.B., Kim G.D. (2019). Do Extracellular synthesis of gold nanoparticles using the marine bacterium Paracoccus haeundaensis BC74171T and evaluation of their antioxidant activity and antiproliferative effect on normal and cancer cell lines. Colloids Surf. B Biointerfaces, 183: 110455. https://doi.org/10.1016/j.colsurfb.2019.110455
Rauf, M.A., Owais, M., Rajpoot, R., Ahmad, F., Khan, N., Zubair, S. (2017). Biomimetically synthesized ZnO nanoparticles attain potent antibacterial activity against less susceptible: S. aureus skin infection in experimental animals. RSC Adv. 7, 3636136373 https://doi.org/10.1039/C7RA05040B
Sagar P.V., Ramadevi D., Basavaiah K., Botsa S.M. (2024). Green synthesis of silver nanoparticles using aqueous leaf extract of Saussurea obvallata for efficient catalytic reduction of nitrophenol, antioxidant, and antibacterial activity. Water Science and Engineering, 17(3): 274-282. https://doi.org/10.1016/j.wse.2023.09.004
Soliman M.K., Abu-Elghait M., Salem S.S., Azab M.S. (2024). Multifunctional properties of silver and gold nanoparticles synthesis by Fusarium pseudonygamai. Biomass Conversion and Biorefinery, 14(22): 28253-28270. https://doi.org/10.1007/s13399-022-03507-9
Soliman M.K., Salem S.S., Abu-Elghait M., Azab M.S. (2023). Biosynthesis of silver and gold nanoparticles and their efficacy towards antibacterial, antibiofilm, cytotoxicity, and antioxidant activities. Applied Biochemistry and Biotechnology, 195(2): 1158-1183. https://doi.org/10.1007/s12010-022-04199-7
Subhani A.A., Irshad M., Ali S., Jawad M., Akhtar M.F., Summer M. (2024). UV-spectrophotometric Optimization of Temperature, pH, Concentration and Time for Eucalyptus Globulus Capped Silver Nanoparticles Synthesis, their Characterization and Evaluation of Biological Applications. J Fluoresc 34, 655666. https://doi.org/10.1007/s10895-023-03260-w
Tabassum N., Khan F., Jeong G.J., Jo D.M., Kim Y.M. (2024). Silver nanoparticles synthesized from Pseudomonas aeruginosa pyoverdine: Antibiofilm and antivirulence agents. Biofilm, 7, 100192. https://doi.org/10.1016/j.bioflm.2024.100192
Tanjung Y.P., Dewi M.K., Gatera V.A., Barliana M.I., Joni I.M., Chaerunisaa A.Y. (2024). Factors affecting the synthesis of bovine serum albumin nanoparticles using the desolvation method. Nanotechnology, Science and Applications, 17: 21-40. https://doi.org/10.2147/NSA.S441324
Tariq F., Ahmed N., Afzal M., Khan M.A.U., Zeshan B. (2020). Synthesis, Characterization and antimicrobial activity of Bacillus subtilis-derived silver nanoparticles against multidrug-resistant bacteria. Jundishapur Journal of Microbiology, 13(5): e91934. http://dx.doi.org/10.5812/jjm.91934
Wang Y., Huang W., Lin Y.S., Yang B.R. (2022). A tunable color filter using a hybrid metasurface composed of ZnO nanopillars and Ag nanoholes. Nanoscale Advances, 4(17): 3624-3633. https://doi.org/10.1039/D2NA00286H
Zhang X.F., Liu Z.G., Shen W., Gurunathan S. (2016). Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. International journal of molecular sciences, 17(9): 1534. https://doi.org/10.3390/ijms17091534
Copyright (c) 2025 FUDMA JOURNAL OF SCIENCES

This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences