ONE-POT BIOSYNTHESIS AND STRUCTURAL ELUCIDATION OF IRON-BIOCHAR NANOCOMPOSITES FROM WASTE COCONUT SHELLS

  • Pius I. Eche Department of Chemistry, University of Uyo, Uyo, Nigeria
  • Solomon E. Shaibu University of Uyo
  • Emmanuel I. Uwah Department of Chemistry, University of Uyo, Uyo, Nigeria
  • Eno A. Moses Department of Chemistry, University of Uyo, Uyo, Nigeria
Keywords: Iron-biochar nanocomposite, Allamanda cathartica, Coconut-derived biochar, One-pot biosynthesis

Abstract

This study explores the eco-friendly one-pot biosynthesis and structural characterization of iron-biochar nanocomposites (IBN) derived from waste coconut shells using Allamanda cathartica extract as a reducing agent. The synthesis process leveraged the phytochemical abundance of the plant extract and the porous structure of coconut biochar, resulting in a material with enhanced properties for environmental applications. Characterization techniques such as BET, XRD, SEM, HRTEM, EDX, and FTIR confirmed the successful integration of nanoscale iron into the biochar matrix. The BET analysis revealed a surface area of 34.035 m²/g, a pore size of 102.2356 Å, and a pore volume of 0.110914 cm³/g, indicating high adsorption potential. XRD patterns confirmed crystalline iron oxide phases, while SEM and TEM images revealed highly porous structures with uniformly dispersed iron nanoparticles. The FTIR identified OH, C-O and aromatic C=C stretching, and EDX confirmed the elemental composition, including iron, oxygen, silicon, aluminum, and carbon, ensuring structural stability and pollutant binding efficiency. Additionally, the phytochemical analysis of Allamanda cathartica extract identified alkaloids, flavonoids, and steroids, supporting its role as a green reducing agent. The study highlights the structural and functional advantages of IBN over unmodified biochar, emphasizing its increased surface area, porosity, and pollutant removal efficiency. Furthermore, the scalability and sustainability of the synthesis process underscore its potential for large-scale environmental applications, aligning with circular economy principles.

References

Adebayo, G. B., Balogun, B. B., Shaibu, S. E., Jamiu, W., Etim, E. U., Oleh, F., Efiong N. E. & Ogboo, B. S. (2019). Comparative study on the adsorption capacity and kinetics of xylene onto rice husk and cassava peel activated carbon. International Journal of Current Research, 11, 8282-8290.

Ahmad, K. S., Yaqoob, S., & Gul, M. M. (2022). Dynamic green synthesis of iron oxide and manganese oxide nanoparticles and their cogent antimicrobial, environmental, and electrical applications. Reviews in Inorganic Chemistry, 42(3), 239263. https://doi.org/10.1515/revic-2021-0033

Ahmad, R., & Haseeb, S. (2015). Absorptive removal of Pb2+, Cu2+ and Ni2+ from the aqueous solution by using groundnut husk modified with Guar Gum (GG): Kinetic and thermodynamic studies. Groundwater for Sustainable Development, 1(12), 4149. https://doi.org/10.1016/j.gsd.2015.11.001

Ahmed, S. F., Mofijur, M., Rafa, N., Chowdhury, A. T., Chowdhury, S., Nahrin, M., Islam, A. B. M. S., & Ong, H. C. (2022). Green approaches in synthesizing nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. Environmental Research, 204, 111967. https://doi.org/10.1016/j.envres.2021.111967

Altkat, A., Alma, M. H., Altkat, A., Bilgili, M. E., & Altkat, S. (2024). A Comprehensive Study of Biochar Yield and Quality Concerning Pyrolysis Conditions: A Multifaceted Approach. Sustainability (Switzerland), 16(2). https://doi.org/10.3390/su16020937

Beniah Obinna, I., & Christian Ebere, E. (2019). A review: Water pollution by heavy metal and organic pollutants: Brief review of sources, effects and progress on remediation with aquatic plants. Analytical Methods in Environmental Chemistry Journal, 2(3), 538. https://doi.org/10.24200/amecj.v2.i03.66

da Silva, N. E. P., Bezerra, L. C. A., Arajo, R. F., Moura, T. A., Vieira, L. H. S., Alves, S. B. S., Fregolente, L. G., Ferreira, O. P., & Avelino, F. (2024). Coconut shell-based biochars produced by an innovative thermochemical process for obtaining improved lignocellulose-based adsorbents. International Journal of Biological Macromolecules, 133685.

De Lima, H. H. C., Llop, M. E. G., Dos Santos Maniezzo, R., Moiss, M. P., Janeiro, V., Arroyo, P. A., Guilherme, M. R., & Rinaldi, A. W. (2021). Enhanced removal of bisphenol A using pine-fruit shell-derived hydrochars: Adsorption mechanisms and reusability. Journal of Hazardous Materials, 416, 126167. https://doi.org/10.1016/j.jhazmat.2021.126167

Dokhe, P., Girme, S., Barawant, M. M., & Abdi, G. (2023). Biochemical, Phytochemical Screening and Pharmacological Potential of Allamanda blanchetii (Purple Allamanda). INTERNATIONAL JOURNAL OF PLANT AND ENVIRONMENT, 9(01), 8992. https://doi.org/10.18811/ijpen.v9i01.15

Ekman, S., Dos Reis, G. S., Laisn, E., Thivet, J., Grimm, A., Lima, E. C., Naushad, Mu., & Dotto, G. L. (2023). Synthesis, Characterization, and Adsorption Properties of Nitrogen-Doped Nanoporous Biochar: Efficient Removal of Reactive Orange 16 Dye and Colorful Effluents. Nanomaterials, 13(14), 2045. https://doi.org/10.3390/nano13142045

Enin, G. N., Shaibu, S. E., Ujah, G. A., Ibu, R. O., & Inangha, P. G. (2021). Phytochemical and Nutritive Composition of Uvariachamae P. Beauv. Leaves, Stem Bark and Root Bark. ChemSearch Journal, 12(1), 9-14.

Enin, G. N., Antia, B. S., Shaibu, S. E., & Nyakno, I. (2023). Comparison of the chemical composition, nutritional values, total phenolics and flavonoids content of the ripe and unripe Solanum nigrum Linn. Fruits from Nigeria. World Journal of Pharmacy and Pharmaceutical Sciences, 12(8), 1-18.

Essien, E. A., Kavaz, D., & Solomon, M. M. (2018). Olive leaves extract mediated zero-valent iron nanoparticles: Synthesis, characterization, and assessment as adsorbent for nickel (II) ions in aqueous medium. Chemical Engineering Communications, 205(11), 15681582. https://doi.org/10.1080/00986445.2018.1461089

Fraga-Corral, M., Otero, P., Cassani, L., Echave, J., Garcia-Oliveira, P., Carpena, M., Chamorro, F., Loureno-Lopes, C., Prieto, M. A., & Simal-Gandara, J. (2021). Traditional Applications of Tannin Rich Extracts Supported by Scientific Data: Chemical Composition, Bioavailability and Bioaccessibility. Foods, 10(2), 251. https://doi.org/10.3390/foods10020251

Hoslett, J., Ghazal, H., Ahmad, D., & Jouhara, H. (2019). Removal of copper ions from aqueous solution using low temperature biochar derived from the pyrolysis of municipal solid waste. Science of the Total Environment, 673, 777789. https://doi.org/10.1016/j.scitotenv.2019.04.085

Hussain, T., Akhter, N., Nadeem, R., Rashid, U., Noreen, S., Anjum, S., Ullah, S., Hussain, H. R., Ashfaq, A., Perveen, S., A. Alharthi, F., & Kazerooni, E. A. (2023). Biogenic synthesis of date stones biochar-based zirconium oxide nanocomposite for the removal of hexavalent chromium from aqueous solution. Applied Nanoscience (Switzerland), 13(9), 60536066. https://doi.org/10.1007/s13204-022-02599-z

Janu, R., Mrlik, V., Ribitsch, D., Hofman, J., Sedlek, P., Bielsk, L., & Soja, G. (2021). Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. Carbon Resources Conversion, 4(November 2020), 3646. https://doi.org/10.1016/j.crcon.2021.01.003

Khan, H., Pervaiz, A., Intagliata, S., Das, N., Nagulapalli Venkata, K. C., Atanasov, A. G., Najda, A., Nabavi, S. M., Wang, D., Pittal, V., & Bishayee, A. (2020). The analgesic potential of glycosides derived from medicinal plants. DARU Journal of Pharmaceutical Sciences, 28(1), 387401. https://doi.org/10.1007/s40199-019-00319-7

Komkiene, J., & Baltrenaite, E. (2016). Biochar as adsorbent for removal of heavy metal ions [Cadmium(II), Copper(II), Lead(II), Zinc(II)] from aqueous phase. International Journal of Environmental Science and Technology, 13(2), 471482. https://doi.org/10.1007/s13762-015-0873-3

Kumar, S., & Saha, A. (2022). Utilization of coconut shell biomass residue to develop sustainable biocomposites and characterize the physical, mechanical, thermal, and water absorption properties. Biomass Conversion and Biorefinery, September 2022. https://doi.org/10.1007/s13399-022-03293-4

Li, J., Xu, C., Zhang, Y., Tang, X., Qi, W., & Wang, Q. (2018). Gravity-directed separation of both immiscible and emulsified oil/water mixtures utilizing coconut shell layer. Journal of Colloid and Interface Science, 511, 233242. https://doi.org/10.1016/j.jcis.2017.09.111

Li, S., Harris, S., Anandhi, A., & Chen, G. (2019). Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. In Journal of Cleaner Production. Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2019.01.106

Li, T., Fang, F., Yang, Y., Shen, W., Bao, W., Zhang, T., Ai, F., Ding, X., Xin, H., & Wang, X. (2019). Surface nano-engineered wheat straw for portable and adjustable water purification. Science of the Total Environment, 655, 10281036. https://doi.org/10.1016/j.scitotenv.2018.11.206

Liu, Z., Yu, L., Zhou, L., & Zhou, Z. (2019). One-Pot Biosynthesis of L -Aspartate from Maleate via an Engineered Strain Containing a Dual-Enzyme System. Applied and Environmental Microbiology, 85(19), e01327-19. https://doi.org/10.1128/AEM.01327-19

Nunes, L. A., Silva, M. L. S., Gerber, J. Z., & Kalid, R. D. A. (2020). Waste green coconut shells: Diagnosis of the disposal and applications for use in other products. Journal of Cleaner Production, 255, 120169. https://doi.org/10.1016/j.jclepro.2020.120169

Pandey, P. P., & Kumar, M. S. (2024). Exploring the therapeutic potential of steroidal alkaloids in managing Alzheimers disease. Steroids, 209, 109468. https://doi.org/10.1016/j.steroids.2024.109468

Pang, Y. L., Law, Z. X., Lim, S., Chan, Y. Y., Shuit, S. H., Chong, W. C., & Lai, C. W. (2021). Enhanced photocatalytic degradation of methyl orange by coconut shellderived biochar composites under visible LED light irradiation. Environmental Science and Pollution Research, 28(21), 2745727473. https://doi.org/10.1007/s11356-020-12251-4

Perveen, S., Nadeem, R., Rehman, S. U., Afzal, N., Anjum, S., Noreen, S., Saeed, R., Amami, M., Al-Mijalli, S. H., & Iqbal, M. (2022). Green synthesis of iron (Fe) nanoparticles using Plumeria obtusa extract as a reducing and stabilizing agent: Antimicrobial, antioxidant and biocompatibility studies. Arabian Journal of Chemistry, 15(5), 103764. https://doi.org/10.1016/j.arabjc.2022.103764

Qu, J., Wang, Y., Tian, X., Jiang, Z., Deng, F., Tao, Y., Jiang, Q., Wang, L., & Zhang, Y. (2021). KOH-activated porous biochar with high specific surface area for adsorptive removal of chromium (VI) and naphthalene from water: Affecting factors, mechanisms and reusability exploration. Journal of Hazardous Materials, 401, 123292. https://doi.org/10.1016/j.jhazmat.2020.123292

Ramya, A., Dhevagi, P., & Rakesh, S. S. (2022). Nanomaterials for Wastewater Remediation: Resolving Huge Problems with Tiny Particles. In A. Krishnan, B. Ravindran, B. Balasubramanian, H. C. Swart, S. J. Panchu, & R. Prasad (Eds.), Emerging Nanomaterials for Advanced Technologies (pp. 601620). Springer International Publishing. https://doi.org/10.1007/978-3-030-80371-1_21

Reethu Metilda Manukonda & Satapathy Dhabal. (2024). Phytochemical Analysis and Evaluation of in Vitro Antimitotic Activity of Allamanda cathartica Methanolic Extract: Research Article. Journal of Pharma Insights and Research, 2(4), 146154. https://doi.org/10.69613/92x5vg75

Regmi, P., Garcia Moscoso, J. L., Kumar, S., Cao, X., Mao, J., & Schafran, G. (2012). Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. Journal of Environmental Management, 109, 6169. https://doi.org/10.1016/j.jenvman.2012.04.047

Shaibu, S. E., Adekola, F. A., Adegoke, H. I., & Ayanda, O. S. (2014). A comparative study of the adsorption of methylene blue onto synthesized nanoscale zero-valent iron-bamboo and manganese-bamboo composites. Materials, 7(6), 4493-4507.

Shaibu, S. E., Adekola, F. A., Adegoke, H. I., & Abdus-Salam, N. (2015). Heavy metal speciation patterns of selected dumpsites in Ilorin Metropolis. International Journal of Chemical, Material and Environmental Research, 2(1), 1-11.

Shaibu, S. E., Adekola, F. A., Adegoke, H. I., & Ayanda, O. S. (2017). Kinetic and Adsorption Studies of a Thiazine and Triarylmethane Dye onto Bamboo Impregnated Nanoscale Manganese. Int J Nano Med & Eng, 2(9), 143-149.

Shaibu, S. E., Inam, E. J., Moses, E. A., Abraham, N. A., & Offiong, N. A. O. (2021). 11 Remediation of Organic Pollutants Using Biobased Nanomaterials.

Shaibu, S. E., Inam, E. J. & Moses, E. A. (2022). Biogenic silver-kaolinite nanocomposite for the sequestration of lead and cadmium in simulated produced water. Journal of Material and Environmental Sustainability Research, 1(2), 13-25.

Simon, N., Shaibu, S. E., Fatunla, O. K., Johnson, A. S., & Ekpo, P. A. (2023). Natural clay mineral-periwinkle activated carbon composite: characterisation and structural insight. World Journal of Applied Science and Technology, 15(1), 15-18.

Shaikh, J. R., & Patil, M. (2020). Qualitative tests for preliminary phytochemical screening: An overview. International Journal of Chemical Studies, 8(2), 603608. https://doi.org/10.22271/chemi.2020.v8.i2i.8834

Shu, Y., Ji, B., Cui, B., Shi, Y., Wang, J., Hu, M., Luo, S., & Guo, D. (2020). Almond shell-derived, biochar-supported, nano-zero-valent iron composite for aqueous hexavalent chromium removal: Performance and mechanisms. Nanomaterials, 10(2). https://doi.org/10.3390/nano10020198

Sutrisno, Soenoko, R., Irawan, Y. S., & Widodo, T. D. (2021). Effect of limestone mass concentration on tensile strength and surface morphology of coconut fiber. IOP Conference Series: Materials Science and Engineering, 1034(1), 012168. https://doi.org/10.1088/1757-899x/1034/1/012168

Thamilselvi, V., & Radha, K. V. (2017). Silver Nanoparticle loaded corncob adsorbent for effluent treatment. Journal of Environmental Chemical Engineering, 5(2), 18431854. https://doi.org/10.1016/j.jece.2017.03.020

Usman, M. A., Momohjimoh, I., & Usman, A. O. (2021). Characterization of groundnut shell powder as a potential reinforcement for biocomposites. Polymers from Renewable Resources, 12(34), 7791. https://doi.org/10.1177/20412479211008761

Vishnu, D., Dhandapani, B., Ramakrishnan, S. R., Pandian, P. K., & Raguraman, T. (2021). Fabrication of surface-engineered superparamagnetic nanocomposites (Co/Fe/Mn) with biochar from groundnut waste residues for the elimination of copper and lead metal ions. Journal of Nanostructure in Chemistry, 11(2), 215228. https://doi.org/10.1007/s40097-020-00360-y

Yallappa, S., Deepthi, D. R., Yashaswini, S., Hamsanandini, R., Chandraprasad, M., Ashok Kumar, S., & Hegde, G. (2017). Natural biowaste of Groundnut shell derived nano carbons: Synthesis, characterization and itsin vitro antibacterial activity. Nano-Structures and Nano-Objects, 12, 8490. https://doi.org/10.1016/j.nanoso.2017.09.009

Ying, Z., Chen, X., Li, H., Liu, X., Zhang, C., Zhang, J., & Yi, G. (2021). Efficient Adsorption of Methylene Blue by Porous Biochar Derived from Soybean Dreg Using a One-Pot Synthesis Method. Molecules, 26(3), 661. https://doi.org/10.3390/molecules26030661

Yuan, D., Guo, Y., Pu, F., Yang, C., Xiao, X., Du, H., He, J., & Lu, S. (2024). Opportunities and challenges in enhancing the bioavailability and bioactivity of dietary flavonoids: A novel delivery system perspective. Food Chemistry, 430, 137115. https://doi.org/10.1016/j.foodchem.2023.137115

Zhang, W., Li, Y., Ma, X., Qian, Y., & Wang, Z. (2020). Simultaneous NO/CO2 removal performance of biochar/limestone in calcium looping process. Fuel, 262(July), 116428. https://doi.org/10.1016/j.fuel.2019.116428

Zhao, J. J., Shen, X. J., Domene, X., Alcaiz, J. M., Liao, X., & Palet, C. (2019). Comparison of biochars derived from different types of feedstock and their potential for heavy metal removal in multiple-metal solutions. Scientific Reports, 9(1), 112. https://doi.org/10.1038/s41598-019-46234-4

Zhu, L., Tong, L., Zhao, N., Li, J., & Lv, Y. (2019). Coupling interaction between porous biochar and nano zero valent iron/nano -hydroxyl iron oxide improves the remediation efficiency of cadmium in aqueous solution. Chemosphere, 219, 493503. https://doi.org/10.1016/j.chemosphere.2018.12.013

Zhu, Y., Fan, W., Zhou, T., & Li, X. (2019). Removal of chelated heavy metals from aqueous solution: A review of current methods and mechanisms. Science of the Total Environment, 678(37), 253266. https://doi.org/10.1016/j.scitotenv.2019.04.416

Zhu, Z., Wu, Y., Hu, C., Zhang, L., Ding, H., Zhu, Y., Fan, Y., Deng, H., Zhou, X., & Tang, S. (2022). Elimination of zinc ions from aqueous solution by a hydroxylapatite-biochar composite material with the hierarchical porous microstructures of sugarcane waste. Journal of Cleaner Production, 362, 132483.

Published
2025-02-17
How to Cite
EcheP. I., ShaibuS. E., UwahE. I., & MosesE. A. (2025). ONE-POT BIOSYNTHESIS AND STRUCTURAL ELUCIDATION OF IRON-BIOCHAR NANOCOMPOSITES FROM WASTE COCONUT SHELLS. FUDMA JOURNAL OF SCIENCES, 9(2), 13 -22. https://doi.org/10.33003/fjs-2025-0902-3037