MACHINE LEARNING-BASED FORECASTING OF BIOACCUMULATION AND HISTOPATHOLOGICAL EFFECTS IN AQUATIC ORGANISMS
Abstract
Heavy metal contamination in freshwater environments poses significant risks to aquatic organisms and human health, as these heavy metals enter freshwater systems through various sources, including industrial waste, agricultural runoff, mining and atmospheric deposition. Efforts to develop efficient methods for removing heavy metals from wastewater have gained momentum in recent years. This study focuses on machine learning (ML) models for predicting the bioaccumulation and histopathological effects of heavy metal pollutants on aquatic life under various climate change scenarios. The ML models have shown promise in forecasting the impacts of heavy metal pollution on freshwater ecosystems and informing conservation strategies. It is crucial to understand the complex interactions between environmental factors, climate change and ecosystem health. This study discusses the importance of incorporating diverse species and environmental factors in these models and acknowledges potential challenges, such as inaccuracies and data misinterpretation. Enhancing the predictive capabilities of ML models is essential for better environmental management and conservation practices via refinement and validation of models using updated data and advanced methodologies. This study also emphasizes the broad potential of ML in environmental research, improvement of model capabilities and challenges posed by heavy metal pollution and climate change.
References
Abiaobo, N. O., Asuquo, I. E. and Akpabio, E. P. (2020). Heavy Metal Bioaccumulation in Periwinkle (Tympanotonus fuscatus) and Tilapia Fish (Oreochromis niloticus) Samples Harvested from a Perturbed Tropical Creek in the Niger Delta, Nigeria. Asian Journal of Environment and Ecology, 1827. https://doi.org/10.9734/ajee/2020/v12i130149 DOI: https://doi.org/10.9734/ajee/2020/v12i130149
Abiona, O. O., Anifowose, A. J., Awojide, S. H., Adebisi, O. C., Adesina, B. T. and Ipinmoroti, M. O. (2019). Histopathological biomarking changes in the internal organs of Tilapia ( Oreochromis niloticus ) and catfish ( Clarias gariepinus ) exposed to heavy metals contamination from Dandaru pond, Ibadan, Nigeria. Journal of Taibah University for Science, 13(1), 903911. https://doi.org/10.1080/16583655.2019.1658400 DOI: https://doi.org/10.1080/16583655.2019.1658400
Alabdulwahab, S. and Moon, B. (2020). Feature Selection Methods Simultaneously Improve the Detection Accuracy and Model Building Time of Machine Learning Classifiers. Symmetry, 12(9), 1424. https://doi.org/10.3390/sym12091424 DOI: https://doi.org/10.3390/sym12091424
Algl, F. and Beyhan, M. (2020). Concentrations and sources of heavy metals in shallow sediments in Lake Bafa, Turkey. Scientific Reports, 10(1), 11782. https://doi.org/10.1038/s41598-020-68833-2 DOI: https://doi.org/10.1038/s41598-020-68833-2
Alloghani, M., Al-Jumeily, D., Mustafina, J., Hussain, A. and Aljaaf, A. J. (2020). A Systematic Review on Supervised and Unsupervised Machine Learning Algorithms for Data Science. In M. W. Berry, A. Mohamed and B. W. Yap (Eds.), Supervised and Unsupervised Learning for Data Science (pp. 321). Springer International Publishing. https://doi.org/10.1007/978-3-030-22475-2_1 DOI: https://doi.org/10.1007/978-3-030-22475-2_1
Amoatey, P. and Baawain, M. S. (2019). Effects of pollution on freshwater aquatic organisms. Water Environment Research, 91(10), 12721287. https://doi.org/10.1002/wer.1221 DOI: https://doi.org/10.1002/wer.1221
Anand, V., Oinam, B. and Parida, B. R. (2020). Uncertainty in hydrological analysis using multi-GCM predictions and multi-parameters under RCP 2.6 and 8.5 scenarios in Manipur River basin, India. Journal of Earth System Science, 129(1), 223. https://doi.org/10.1007/s12040-020-01492-z DOI: https://doi.org/10.1007/s12040-020-01492-z
Arathy Nair, G. R., Adarsh, S., El-Shafie, A. and Ahmed, A. N. (2024). Enhancing hydrological data completeness: A performance evaluation of various machine learning techniques using probabilistic fusion imputer with neural networks for streamflow data reconstruction. Journal of Hydrology, 639, 131583. https://doi.org/10.1016/j.jhydrol.2024.131583 DOI: https://doi.org/10.1016/j.jhydrol.2024.131583
Bashir, S., Qamar, U., Khan, F. H. and Naseem, L. (2016). HMV: A medical decision support framework using multi-layer classifiers for disease prediction. Journal of Computational Science, 13, 1025. https://doi.org/10.1016/j.jocs.2016.01.001 DOI: https://doi.org/10.1016/j.jocs.2016.01.001
Bawuro, A. A., Voegborlo, R. B. and Adimado, A. A. (2018). Bioaccumulation of Heavy Metals in Some Tissues of Fish in Lake Geriyo, Adamawa State, Nigeria. Journal of Environmental and Public Health, 2018, 17. https://doi.org/10.1155/2018/1854892 DOI: https://doi.org/10.1155/2018/1854892
Bello, A.-A. D., Argungu, A. S., Dinki, A. T. S., Yahaya, A., Sulaiman, K., Salaudeen, A. and Abdullahi, N. (2024). Dam break study and` its flood risk in Gurara watershed-Nigeria under varied spatio-temporal conditions by integrating HSPF and HECRAS models. Environmental Earth Sciences, 83(4), 136. https://doi.org/10.1007/s12665-024-11425-4 DOI: https://doi.org/10.1007/s12665-024-11425-4
Bergen, K. J., Johnson, P. A., De Hoop, M. V. and Beroza, G. C. (2019). Machine learning for data-driven discovery in solid Earth geoscience. Science, 363(6433), eaau0323. https://doi.org/10.1126/science.aau0323 DOI: https://doi.org/10.1126/science.aau0323
Bhagat, S. K., Tiyasha, T., Kumar, A., Malik, T., Jawad, A. H., Khedher, K. M., Deo, R. C. and Yaseen, Z. M. (2022). Integrative artificial intelligence models for Australian coastal sediment lead prediction: An investigation of in-situ measurements and meteorological parameters effects. Journal of Environmental Management, 309, 114711. https://doi.org/10.1016/j.jenvman.2022.114711 DOI: https://doi.org/10.1016/j.jenvman.2022.114711
Bibi, M. (2023). Essential and non-essential heavy metals sources and impacts on human health and plants. Pure and Applied Biology, 12(2). https://doi.org/10.19045/bspab.2023.120083 DOI: https://doi.org/10.19045/bspab.2023.120083
Briffa, J., Sinagra, E. and Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691 DOI: https://doi.org/10.1016/j.heliyon.2020.e04691
Camacho, C., Maulvault, A. L., Santos, M. T., Barbosa, V., Fogaa, F. H. S., Pouso-Ferreira, P., Nunes, M. L., Rosa, R. and Marques, A. (2020). Mercury in Juvenile Solea senegalensis: Linking Bioaccumulation, Seafood Safety and Neuro-Oxidative Responses under Climate Change-Related Stressors. Applied Sciences, 10(6), 1993. https://doi.org/10.3390/app10061993 DOI: https://doi.org/10.3390/app10061993
Chicco, D., Warrens, M. J. and Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623. https://doi.org/10.7717/peerj-cs.623 DOI: https://doi.org/10.7717/peerj-cs.623
Ciszewski, D. and Grygar, T. M. (2016). A Review of Flood-Related Storage and Remobilization of Heavy Metal Pollutants in River Systems. Water, Air and Soil Pollution, 227(7), 239. https://doi.org/10.1007/s11270-016-2934-8 DOI: https://doi.org/10.1007/s11270-016-2934-8
Crawford, J., Chikina, M. and Greene, C. S. (2024). Optimizers dilemma: Optimization strongly influences model selection in transcriptomic prediction. Bioinformatics Advances, 4(1), vbae004. https://doi.org/10.1093/bioadv/vbae004 DOI: https://doi.org/10.1093/bioadv/vbae004
Dawson, D. E., Lau, C., Pradeep, P., Sayre, R. R., Judson, R. S., Tornero-Velez, R. and Wambaugh, J. F. (2023). A Machine Learning Model to Estimate Toxicokinetic Half-Lives of Per- and Polyfluoro-Alkyl Substances (PFAS) in Multiple Species. Toxics, 11(2), 98. https://doi.org/10.3390/toxics11020098 DOI: https://doi.org/10.3390/toxics11020098
Derouiche, S., Cheradid, T. and Guessoum, M. (2020). Heavy metals, oxidative stress and inflammation in pathophysiology of chronic kidney diseaseA review. Asian Journal of Pharmacy and Technology, 10(3), 202. https://doi.org/10.5958/2231-5713.2020.00033.1 DOI: https://doi.org/10.5958/2231-5713.2020.00033.1
Edo, G. I., Samuel, P. O., Oloni, G. O., Ezekiel, G. O., Ikpekoro, V. O., Obasohan, P., Ongulu, J., Otunuya, C. F., Opiti, A. R., Ajakaye, R. S., Essaghah, A. E. A. and Agbo, J. J. (2024). Environmental persistence, bioaccumulation and ecotoxicology of heavy metals. Chemistry and Ecology, 40(3), 322349. https://doi.org/10.1080/02757540.2024.2306839 DOI: https://doi.org/10.1080/02757540.2024.2306839
Elsebakhi, E., Lee, F., Schendel, E., Haque, A., Kathireason, N., Pathare, T., Syed, N. and Al-Ali, R. (2015). Large-scale machine learning based on functional networks for biomedical big data with high performance computing platforms. Journal of Computational Science, 11, 6981. https://doi.org/10.1016/j.jocs.2015.09.008 DOI: https://doi.org/10.1016/j.jocs.2015.09.008
Eneh A., Ebem D. U., Jiya E. A., Etuh E. & Raskeb B. (2024). Machine Learning Models For Classification and Prediction of Preeclampsia in Kaduna, Nigeria. Fudma Journal of Sciences, 8(6), 55 - 62. https://doi.org/10.33003/fjs-2024-0806-2731 DOI: https://doi.org/10.33003/fjs-2024-0806-2731
Fu, Z. and Xi, S. (2020). The effects of heavy metals on human metabolism. Toxicology Mechanisms and Methods, 30(3), 167176. https://doi.org/10.1080/15376516.2019.1701594 DOI: https://doi.org/10.1080/15376516.2019.1701594
Garca, S., Ramrez-Gallego, S., Luengo, J., Bentez, J. M. and Herrera, F. (2016). Big data preprocessing: Methods and prospects. Big Data Analytics, 1(1), 9. https://doi.org/10.1186/s41044-016-0014-0 DOI: https://doi.org/10.1186/s41044-016-0014-0
Ge, W., Qin, Y., Li, Z., Zhang, H., Gao, W., Guo, X., Song, Z., Li, W. and Van Gelder, P. (2020). An innovative methodology for establishing societal life risk criteria for dams: A case study to reservoir dam failure events in China. International Journal of Disaster Risk Reduction, 49, 101663. https://doi.org/10.1016/j.ijdrr.2020.101663 DOI: https://doi.org/10.1016/j.ijdrr.2020.101663
Goyal, D., Yadav, A., Prasad, M., Singh, T. B., Shrivastav, P., Ali, A., Dantu, P. K. and Mishra, S. (2020). Effect of Heavy Metals on Plant Growth: An Overview. In M. Naeem, A. A. Ansari and S. S. Gill (Eds.), Contaminants in Agriculture (pp. 79101). Springer International Publishing. https://doi.org/10.1007/978-3-030-41552-5_4 DOI: https://doi.org/10.1007/978-3-030-41552-5_4
Grisoni, F., Consonni, V. and Vighi, M. (2018). Detecting the bioaccumulation patterns of chemicals through data-driven approaches. Chemosphere, 208, 273284. https://doi.org/10.1016/j.chemosphere.2018.05.157 DOI: https://doi.org/10.1016/j.chemosphere.2018.05.157
Guerrera, M. C., Aragona, M., Porcino, C., Fazio, F., Laur, R., Levanti, M., Montalbano, G., German, G., Abbate, F. and German, A. (2021). Micro and Nano Plastics Distribution in Fish as Model Organisms: Histopathology, Blood Response and Bioaccumulation in Different Organs. Applied Sciences, 11(13), 5768. https://doi.org/10.3390/app11135768 DOI: https://doi.org/10.3390/app11135768
Hafsa, N., Rushd, S., Al-Yaari, M. and Rahman, M. (2020). A Generalized Method for Modeling the Adsorption of Heavy Metals with Machine Learning Algorithms. Water, 12(12), 3490. https://doi.org/10.3390/w12123490 DOI: https://doi.org/10.3390/w12123490
Hassan, A. E., Bekhit, H. M. and Chapman, J. B. (2009). Using Markov Chain Monte Carlo to quantify parameter uncertainty and its effect on predictions of a groundwater flow model. Environmental Modelling and Software, 24(6), 749763. https://doi.org/10.1016/j.envsoft.2008.11.002 DOI: https://doi.org/10.1016/j.envsoft.2008.11.002
Huber, R., DOnofrio, C., Devaraju, A., Klump, J., Loescher, H. W., Kindermann, S., Guru, S., Grant, M., Morris, B., Wyborn, L., Evans, B., Goldfarb, D., Genazzio, M. A., Ren, X., Magagna, B., Thiemann, H. and Stocker, M. (2021). Integrating data and analysis technologies within leading environmental research infrastructures: Challenges and approaches. Ecological Informatics, 61, 101245. https://doi.org/10.1016/j.ecoinf.2021.101245 DOI: https://doi.org/10.1016/j.ecoinf.2021.101245
Jia, Y., Hou, X., Wang, Z. and Hu, X. (2021). Machine Learning Boosts the Design and Discovery of Nanomaterials. ACS Sustainable Chemistry and Engineering, 9(18), 61306147. https://doi.org/10.1021/acssuschemeng.1c00483 DOI: https://doi.org/10.1021/acssuschemeng.1c00483
Jin, M., Yuan, H., Liu, B., Peng, J., Xu, L. and Yang, D. (2020). Review of the distribution and detection methods of heavy metals in the environment. Analytical Methods, 12(48), 57475766. https://doi.org/10.1039/D0AY01577F DOI: https://doi.org/10.1039/D0AY01577F
Khan, M. I., Khisroon, M., Khan, A., Gulfam, N., Siraj, M., Zaidi, F., Ahmadullah, Abidullah, Fatima, S. H., Noreen, S., Hamidullah, Shah, Z. A. and Qadir, F. (2018). Bioaccumulation of Heavy Metals in Water, Sediments and Tissues and Their Histopathological Effects on Anodonta cygnea (Linea, 1876) in Kabul River, Khyber Pakhtunkhwa, Pakistan. BioMed Research International, 2018, 110. https://doi.org/10.1155/2018/1910274 DOI: https://doi.org/10.1155/2018/1910274
Kiran, Bharti, R. and Sharma, R. (2022). Effect of heavy metals: An overview. Materials Today: Proceedings, 51, 880885. https://doi.org/10.1016/j.matpr.2021.06.278 DOI: https://doi.org/10.1016/j.matpr.2021.06.278
Korotkov, S. M. (2023). Mitochondrial Oxidative Stress Is the General Reason for Apoptosis Induced by Different-Valence Heavy Metals in Cells and Mitochondria. International Journal of Molecular Sciences, 24(19), 14459. https://doi.org/10.3390/ijms241914459 DOI: https://doi.org/10.3390/ijms241914459
Kothiyal, S., PrabhjyotKaur, Sandhu, S. S., & Kaur, J. (2023). Modelling the climate change impact of mitigation ( RCP 2.6) and high emission ( RCP 8.5) scenarios on maize yield and possible adaptation measures in different agroclimatic zones of Punjab, India. Journal of the Science of Food and Agriculture, 103(14), 69846994. https://doi.org/10.1002/jsfa.12779 DOI: https://doi.org/10.1002/jsfa.12779
Kchler, E. C., Kirschneck, C., Maran-Vsquez, G. A., Schroder, . G. D., Baratto-Filho, F., Romano, F. L., Stuani, M. B. S., Matsumoto, M. A. N. and De Araujo, C. M. (2024). Mandibular and dental measurements for sex determination using machine learning. Scientific Reports, 14(1), 9587. https://doi.org/10.1038/s41598-024-59556-9 DOI: https://doi.org/10.1038/s41598-024-59556-9
Kumar, M., Singh, S., Jain, A., Yadav, S., Dubey, A., & Trivedi, S. P. (2024). A review on heavy metal-induced toxicity in fishes: Bioaccumulation, antioxidant defense system, histopathological manifestations and transcriptional profiling of genes. Journal of Trace Elements in Medicine and Biology, 83, 127377. https://doi.org/10.1016/j.jtemb.2023.127377 DOI: https://doi.org/10.1016/j.jtemb.2023.127377
Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., and Liu, H. (2018). Feature Selection: A Data Perspective. ACM Computing Surveys, 50(6), 145. https://doi.org/10.1145/3136625 DOI: https://doi.org/10.1145/3136625
Li, Y. (2017). Deep Reinforcement Learning: An Overview (Version 6). arXiv. https://doi.org/10.48550/ARXIV.1701.07274
Li, Z., Ma, X., and Xin, H. (2017). Feature engineering of machine-learning chemisorption models for catalyst design. Catalysis Today, 280, 232238. https://doi.org/10.1016/j.cattod.2016.04.013 DOI: https://doi.org/10.1016/j.cattod.2016.04.013
Liu, L., Li, W., Song, W., and Guo, M. (2018). Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of The Total Environment, 633, 206219. https://doi.org/10.1016/j.scitotenv.2018.03.161 DOI: https://doi.org/10.1016/j.scitotenv.2018.03.161
Mahesh, B. (2020). Machine Learning AlgorithmsA Review. International Journal of Science and Research (IJSR), 9(1), 381386. https://doi.org/10.21275/ART20203995 DOI: https://doi.org/10.21275/ART20203995
Maia, A. G., Camargo-Valero, M. A., Trigg, M. A., and Khan, A. (2024). Uncertainty and Sensitivity Analysis in Reservoir Modeling: A Monte Carlo Simulation Approach. Water Resources Management, 38(8), 28352850. https://doi.org/10.1007/s11269-024-03794-z DOI: https://doi.org/10.1007/s11269-024-03794-z
Mao, Y., Di, W., Zong, D., Mu, Z., and He, X. (2024). Machine learningbased radiomics nomograms to predict number of fields in postoperative IMRT for breast cancer. Journal of Applied Clinical Medical Physics, 25(3), e14194. https://doi.org/10.1002/acm2.14194 DOI: https://doi.org/10.1002/acm2.14194
Mnyawami, Y. N., Maziku, H. H., and Mushi, J. C. (2022). Comparative Study of AutoML Approach, Conventional Ensemble Learning Method and KNearest Oracle-AutoML Model for Predicting Student Dropouts in Sub-Saharan African Countries. Applied Artificial Intelligence, 36(1), 2145632. https://doi.org/10.1080/08839514.2022.2145632 DOI: https://doi.org/10.1080/08839514.2022.2145632
Obadimu, C. O., Shaibu, S. E., Enin, G. N., Ituen, E. B., Anweting, I. B., Ubong, U. U., Ekwere, I. O., Adewusi, S. G., Adeoye, T. J., Fapojuwo, D. P. and Ofon, U. A. (2024). Aqueous phase adsorption of phenothiazine derivative onto zinc oxide doped activated carbon. Scientific Reports, 14(1), 21611. DOI: https://doi.org/10.1038/s41598-024-71196-7
Parida, L., and Patel, T. N. (2023). Systemic impact of heavy metals and their role in cancer development: A review. Environmental Monitoring and Assessment, 195(6), 766. https://doi.org/10.1007/s10661-023-11399-z DOI: https://doi.org/10.1007/s10661-023-11399-z
Petrea, tefan-M., Costache, M., Cristea, D., Strungaru, tefan-A., Simionov, I.-A., Mogodan, A., Oprica, L., & Cristea, V. (2020). A Machine Learning Approach in Analyzing Bioaccumulation of Heavy Metals in Turbot Tissues. Molecules, 25(20), 4696. https://doi.org/10.3390/molecules25204696 DOI: https://doi.org/10.3390/molecules25204696
Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V. and Hyndman, D. (2018). A Review of the Integrated Effects of Changing Climate, Land Use and Dams on Mekong River Hydrology. Water, 10(3), 266. https://doi.org/10.3390/w10030266 DOI: https://doi.org/10.3390/w10030266
Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M. P., Shyu, M.-L., Chen, S.-C. and Iyengar, S. S. (2019). A Survey on Deep Learning: Algorithms, Techniques and Applications. ACM Computing Surveys, 51(5), 136. https://doi.org/10.1145/3234150 DOI: https://doi.org/10.1145/3234150
Rahmani, A. M., Yousefpoor, E., Yousefpoor, M. S., Mehmood, Z., Haider, A., Hosseinzadeh, M. and Ali Naqvi, R. (2021). Machine Learning (ML) in Medicine: Review, Applications and Challenges. Mathematics, 9(22), 2970. https://doi.org/10.3390/math9222970 DOI: https://doi.org/10.3390/math9222970
Robinson, K. F., Bronte, C. R., Bunnell, D. B., Euclide, P. T., Hondorp, D. W., Janssen, J. A., Kornis, M. S., Ogle, D. H., Otte, W., Riley, S. C., Vinson, M. R., Volkel, S. L. and Weidel, B. C. (2021). A Synthesis of the Biology and Ecology of Sculpin Species in the Laurentian Great Lakes and Implications for the Adaptive Capacity of the Benthic Ecosystem. Reviews in Fisheries Science & Aquaculture, 29(1), 96121. https://doi.org/10.1080/23308249.2020.1782341 DOI: https://doi.org/10.1080/23308249.2020.1782341
Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M. and Chica-Rivas, M. (2015). Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geology Reviews, 71, 804818. https://doi.org/10.1016/j.oregeorev.2015.01.001 DOI: https://doi.org/10.1016/j.oregeorev.2015.01.001
Roh, Y., Heo, G. and Whang, S. E. (2021). A Survey on Data Collection for Machine Learning: A Big Data - AI Integration Perspective. IEEE Transactions on Knowledge and Data Engineering, 33(4), 13281347. https://doi.org/10.1109/TKDE.2019.2946162 DOI: https://doi.org/10.1109/TKDE.2019.2946162
Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3), 160. https://doi.org/10.1007/s42979-021-00592-x DOI: https://doi.org/10.1007/s42979-021-00592-x
Shaibu, S. E., Effiom, A. O., Essien, N. S., Archibong, E. S., Iboutenang, N. D., Effiong, A. I., Asukwo, H. O., David, B. A., Effiong, F. I., Ekpo, C., Akpabio, I. F., Simon, S. E. and Eyo, G. A. (2024). Evaluating Groundwater Safety: Heavy Metal Contamination of Selected Boreholes across Uyo Metropolis, Akwa Ibom State, Nigeria. UMYU Journal of Microbiology Research (UJMR), 267277. https://doi.org/10.47430/ujmr.2493.033 DOI: https://doi.org/10.47430/ujmr.2493.033
Shaibu, S., Inam, E., Moses, E., Ofon, U., Fatunla, O., Obadimu, C., Ibuotenang, N., Offiong, N.-A., Ekpo, V., Adeoye, T., Udokang, E. and Fapojuwo, D. (2023). Prospects of nanosorption and photocatalysis in remediation of oil spills. Journal of the Nigerian Society of Physical Sciences, 1043. https://doi.org/10.46481/jnsps.2023.1043 DOI: https://doi.org/10.46481/jnsps.2023.1043
Shaibu, S. E., Adekola, F. A., Adegoke, H. I., & Abdus-Salam, N. (2015). Heavy metal speciation patterns of selected dumpsites in Ilorin Metropolis. International Journal of Chemical, Material and Environmental Research, 2(1), 1-11.
Moses, E. A., Akpan, D., Shaibu, S. E. and Ekpo, V. F. (2022). Risk assessment of pesticide residues in fish samples from Nwaniba River, Akwa Ibom state, Nigeria. World Journal of Applied Science and Technology, 14(2): 35-41
Simionov, I.-A., Cristea, D. S., Petrea, tefan-M., Mogodan, A., Jijie, R., Ciornea, E., Nicoar, M., Turek Rahoveanu, M. M. and Cristea, V. (2021). Predictive Innovative Methods for Aquatic Heavy Metals Pollution Based on Bioindicators in Support of Blue Economy in the Danube River Basin. Sustainability, 13(16), 8936. https://doi.org/10.3390/su13168936 DOI: https://doi.org/10.3390/su13168936
Sun, Q., Li, Y., Shi, L., Hussain, R., Mehmood, K., Tang, Z. and Zhang, H. (2022). Heavy metals induced mitochondrial dysfunction in animals: Molecular mechanism of toxicity. Toxicology, 469, 153136. https://doi.org/10.1016/j.tox.2022.153136 DOI: https://doi.org/10.1016/j.tox.2022.153136
Theng, D. and Bhoyar, K. K. (2024). Feature selection techniques for machine learning: A survey of more than two decades of research. Knowledge and Information Systems, 66(3), 15751637. https://doi.org/10.1007/s10115-023-02010-5 DOI: https://doi.org/10.1007/s10115-023-02010-5
Tripathi, S., Muhr, D., Brunner, M., Jodlbauer, H., Dehmer, M. and Emmert-Streib, F. (2021). Ensuring the Robustness and Reliability of Data-Driven Knowledge Discovery Models in Production and Manufacturing. Frontiers in Artificial Intelligence, 4, 576892. https://doi.org/10.3389/frai.2021.576892 DOI: https://doi.org/10.3389/frai.2021.576892
Ubong, U. U., Ekwere, I. O. and Obadimu, C. O. (2023). Human Health Risk Assessment: a Case Study of Heavy Metals Accumulations in Tissues of Callinectus latimanus from Iko River, Eastern Obolo LGA, Akwa Ibom State. Researchers Journal of Science and Technology, 3(1), 29-41. DOI: https://doi.org/10.9734/ajee/2022/v19i3408
Ubong, U. U., Ekwere, I. O., Ikpe, E. E. and Obadimu, C. (2023). Evaluation of Heavy Metals and Total Hydrocarbon Contents in Crassostrea Spp (Oysters) from Qua Iboe River, Ibeno LGA. American Journal of Applied and Industrial Chemistry, 7(1), 17-24.
Uddin, M. F., Lee, J., Rizvi, S. and Hamada, S. (2018). Proposing Enhanced Feature Engineering and a Selection Model for Machine Learning Processes. Applied Sciences, 8(4), 646. https://doi.org/10.3390/app8040646 DOI: https://doi.org/10.3390/app8040646
Ummenhofer, C. C. and Meehl, G. A. (2017). Extreme weather and climate events with ecological relevance: A review. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1723), 20160135. https://doi.org/10.1098/rstb.2016.0135 DOI: https://doi.org/10.1098/rstb.2016.0135
Umoren, I. U., Sunday, S. U. and Shaibu, S. E. (2024). Application of the Langmuir and Freundlich equations for the removal of Cd2++ and Pb2+ ions by adsorption on to natural clay minerals. World Journal of Applied Science & Technology, 15(2), 267274. https://doi.org/10.4314/wojast.v15i2.17 DOI: https://doi.org/10.4314/wojast.v15i2.17
Vardhan, K. H., Kumar, P. S. and Panda, R. C. (2019). A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids, 290, 111197. https://doi.org/10.1016/j.molliq.2019.111197 DOI: https://doi.org/10.1016/j.molliq.2019.111197
Vieira, C. E. D., Marques, J. A., Da Silva, N. G., Bevitrio, L. Z., Zebral, Y. D., Maraschi, A. C., Costa, S. R., Costa, P. G., Damasceno, E. M., Pirovani, J. C. M., Do Vale-Oliveira, M., Souza, M. M., De Martinez Gaspar Martins, C., Bianchini, A. and Sandrini, J. Z. (2022). Ecotoxicological impacts of the Fundo dam failure in freshwater fish community: Metal bioaccumulation, biochemical, genetic and histopathological effects. Science of The Total Environment, 832, 154878. https://doi.org/10.1016/j.scitotenv.2022.154878 DOI: https://doi.org/10.1016/j.scitotenv.2022.154878
Volkel, S. L., Robinson, K. F., Bunnell, D. B., Connerton, M. J., Holden, J. P., Hondorp, D. W. and Weidel, B. C. (2021). Slimy sculpin depth shifts and habitat squeeze following the round goby invasion in the Laurentian Great Lakes. Journal of Great Lakes Research, 47(6), 17931803. https://doi.org/10.1016/j.jglr.2021.08.017 DOI: https://doi.org/10.1016/j.jglr.2021.08.017
Watson, B. I., Williams, J. W., Russell, J. M., Jackson, S. T., Shane, L. and Lowell, T. V. (2018). Temperature variations in the southern Great Lakes during the last deglaciation: Comparison between pollen and GDGT proxies. Quaternary Science Reviews, 182, 7892. https://doi.org/10.1016/j.quascirev.2017.12.011 DOI: https://doi.org/10.1016/j.quascirev.2017.12.011
Yaseen, Z. M. (2021). An insight into machine learning models era in simulating soil, water bodies and adsorption heavy metals: Review, challenges and solutions. Chemosphere, 277, 130126. https://doi.org/10.1016/j.chemosphere.2021.130126 DOI: https://doi.org/10.1016/j.chemosphere.2021.130126
Zamora-Ledezma, C., Negrete-Bolagay, D., Figueroa, F., Zamora-Ledezma, E., Ni, M., Alexis, F. and Guerrero, V. H. (2021). Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environmental Technology & Innovation, 22, 101504. https://doi.org/10.1016/j.eti.2021.101504 DOI: https://doi.org/10.1016/j.eti.2021.101504
Zhu, D., Cai, C., Yang, T. and Zhou, X. (2018). A Machine Learning Approach for Air Quality Prediction: Model Regularization and Optimization. Big Data and Cognitive Computing, 2(1), 5. https://doi.org/10.3390/bdcc2010005 DOI: https://doi.org/10.3390/bdcc2010005
Copyright (c) 2024 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences