A MODIFIED DHILLON DISTRIBUTION: PROPERTIES AND APPLICATION

  • A. S. Iliyasu
  • O. O. Ishaq
  • A. O. Abduhamid
  • A. Ibrahim
  • S. S. Abubakar
  • U. M. Musa
  • S. Ahmed
  • A. Usman
  • B. M. Abba
Keywords: Dhillon distribution, Distribution Properties, Maximum Likelihood Estimate, Real data Applications.

Abstract

There are still a lot of real-world issues where the observed facts cannot effectively fit into frequently used classical probability models. To solve this, it is imperative to provide probability models that accurately represent the behavior of certain real-world phenomena. having considered these problems, the study proposed a new lifetime distribution, the Modified Dhillon Distribution (MDD), developed using the Beta integrated model approach. The study examines the statistical properties of the new distribution such as the Quantile function, Moment, Moment generating function, Entropy, and reliability functions. Moreover, the maximum likelihood approach was used to estimate the distribution parameters. Using real data, the study demonstrates the applications of the MDD using two sets of real data sets, and it has the minimum value of AIC, BIC and CAIC. Therefore, based on the results the study concluded that the MDD offers the best fit out of all the competing distributions.

References

Abubakar, U., Osi, A. A., Salisu, I. A., Muhammad, H., Muhammad, Y. I., and Abubakar, A. (2024). Arcsine rayliegh pareto distribution: Properties and application to carbon fibers data sets. FUDMA JOURNAL OF SCIENCES, 8(2):301–305.

Al-Essa, L. A., Muhammad, M., Tahir, M. H., Abba, B., Xiao, J., and Jamal, F. (2023). A new flexible four parameter bathtub curve failure rate model, and its application to right-censored data. IEEE Access.

Almalki, S. J. (2018). A reduced new modified weibull distribution. Communications in Statistics-Theory and Methods, 47(10):2297–2313.

Almalki, S. J. and Yuan, J. (2013). A new modified weibull distribution. Reliability Engineering & System Safety, 111:164–170.

Anzagra, L., Sarpong, S., and Nasiru, S. (2020).Chen-g class of distributions. Cogent Mathematics & Statistics, 7(1):1721401.

Carrasco, J. M., Ortega, E. M., and Cordeiro, G. M. (2008). A generalized modified weibull distribution for lifetime modeling. Computational Statistics & Data Analysis, 53(2):450–462.

Cordeiro, G. M., Ortega, E. M., and Lemonte, A. J. (2014). The exponential–weibull lifetime distribution. Journal of Statistical Computation and simulation,
84(12):2592–2606.

Dhillon, B. S. (1980). Statistical functions to represent various types of hazard rates. Microelectronics Reliability, 20(5):581–584.

Dhillon, B. S. (1981). Life distributions. IEEE Transactions on Reliability, 30(5):457–460.

Dhillon, B. S. (2007). Applied reliability and quality: fundamentals, methods and procedures. Springer Science & Business Media.

Ghazal, M. (2023). A new extension of the modified weibull distribution with applications for engineering data. Probabilistic Engineering Mechanics, 74:103523.

Lai, C., Moore, T., and Xie, M. (1998). The beta integrated model. In Proc. Int. Workshop on Reliability Modeling and Analysis—From Theory to Practice, pages 153–159.

Lai, C., Xie, M., and Murthy, D. (2003). A modified weibull distribution. IEEE Transactions on reliability, 52(1):33–37.

Lai, C.-D., Jones, G., and Xie, M. (2016). Integrated beta model for bathtub-shaped hazard rate data. Quality Technology & Quantitative Management, 13(3):229–240.

Meeker, W. Q., Escobar, L. A., and Pascual, F. G. (2022). Statistical methods for reliability data. John Wiley & Sons.

Nadarajah, S. and Haghighi, F. (2011). An extension of the exponential distribution. Statistics, 45(6):543–558.

Nassar, M. M. and Eissa, F. H. (2003). On the exponentiated weibull distribution. Communications in Statistics-Theory and Methods, 32(7):1317–1336.

Pal, M., Ali, M. M., and Woo, J. (2006). Exponentiated weibull distribution. Statistica, 66(2):139–147.

Rizvi, R., Khare, D., and Dhillon, R. (2008). Statistical models for aboveground biomass of populus deltoides planted in agroforestry in haryana. Tropical Ecology, 49(1):35.

Silva, G. O., Ortega, E. M., and Cordeiro, G. M. (2010). The beta modified weibull distribution. Lifetime data analysis, 16:409–430.

Sra, S. and Dhillon, I. S. (2006). Nonnegative matrix approximation: Algorithms and applications. Computer Science Department, University of Texas at Austin.

Thach, T. T., Bris, R., Volf, P., and Coolen, F. P.(2020). Non-linear failure rate: A bayes studyusing hamiltonian monte carlo simulation. International Journal of Approximate Reasoning, 123:55–76.

Weibull, W. (1951). A statistical distribution function of wide applicability. Journal of applied mechanics.

Xie, M. and Lai, C. D. (1996). Reliability analysis using an additive weibull model with bathtubshaped failure rate function. Reliability Engineering & System Safety, 52(1):87–93.

Xie, M., Tang, Y., and Goh, T. N. (2002). A modified weibull extension with bathtub-shaped failure rate function. Reliability Engineering & System Safety, 76(3):279–285.

Zamani, Z., Afshari, M., Karamikabir, H., Ahmadi, M. K., and Alizadeh, M. (2021). The new extension of odd log-logistic chen distribution: Mathematical properties and applications. Thailand Statistician, 19(2):317–338.
Published
2024-09-25
How to Cite
IliyasuA. S., IshaqO. O., AbduhamidA. O., IbrahimA., AbubakarS. S., MusaU. M., AhmedS., UsmanA., & AbbaB. M. (2024). A MODIFIED DHILLON DISTRIBUTION: PROPERTIES AND APPLICATION. FUDMA JOURNAL OF SCIENCES, 8(5), 134 - 142. https://doi.org/10.33003/fjs-2024-0805-2762