NONPHARMACEUTICAL AND PHARMACEUTICAL COVID-19 PREDICTION MODELS

  • Friday Zinzendoff Okwonu
Keywords: Non-pharmaceutical approaches, Pharmaceutical approach, Covid-19, Prediction models

Abstract

Global tourism and leisure came to hurt due to the Covid-19 pandemic. The ways we lived our lives was automatically truncated due to the fear of the virus of unknown etiology. We started adjusting to new lifestyle. Community life came to hurt due to lockdown to curtail the spread of the virus. Various forms of non-pharmaceutical approaches (NPA) or intervention (NPI) was adopted in the absence of vaccine. As time progresses different vaccine became available (Pharmaceutical approach {PA)) was discovered to mitigate the spread of the virus. To reassure the safety of people, different levels of social distancing values in meters was applied due to the fear that the virus was airborne.  This study tends to investigate whether onset data from the NPA and PA interventions could be used to predict the probability of infection thereby bringing the spread of the virus to a hurt. The analysis based on these prediction models revealed that both the NPA and the PA are very effective in mitigating and hurting the spread of the virus. The PA prediction model revealed that as more people are vaccinated with time, the probability of infection reduces drastically thereby increasing the probability of social mingling. Therefore, we concluded that these data independent prediction models are useful to predict the likely outcome of infection of the disease of unknown etiology based on the onset data.

References

Ahad, N. A., Okwonu, F. Z., & Siong, P. Y. (2020). COVID-19 Outbreak in Malaysia: Investigation on Fatality Cases. Journal of Advanced Research in Applied Sciences and Engineering Technology, In Press. DOI: https://doi.org/10.37934/araset.20.1.110

Ahmad, N. A., & Okwonu, F. Z. (2011). Least square problem for adaptive filtering. Australian Journal of Basic and Applied Sciences, 5, 69–74.

Al-Najjar, H., & Al-Rousan, N. (2020). A classifier prediction model to predict the status of Coronavirus CoVID-19 patients in South Korea. European Review for Medical and Pharmacological Sciences, 24(6). https://doi.org/10.26355/eurrev_202003_20709

Ardabili, S. F., Mosavi, A., Ghamisi, P., Ferdinand, F., Varkonyi-Koczy, A. R., Reuter, U., Rabczuk, T., & Atkinson, P. M. (2020). COVID-19 outbreak prediction with machine learning. Algorithms, 13(10). https://doi.org/10.3390/a13100249 DOI: https://doi.org/10.3390/a13100249

Basu, S., & Campbell, R. H. (2020). Going by the numbers: Learning and modeling COVID-19 disease dynamics. Chaos, Solitons and Fractals, 138. https://doi.org/10.1016/j.chaos.2020.110140 DOI: https://doi.org/10.1016/j.chaos.2020.110140

Borovkov, A. I., Bolsunovskaya, M. v., & Gintciak, A. M. (2022). Intelligent Data Analysis for Infection Spread Prediction. Sustainability (Switzerland), 14(4). https://doi.org/10.3390/su14041995 DOI: https://doi.org/10.3390/su14041995

Branas, C. C., Rundle, A., Pei, S., Yang, W., Carr, B. G., Sims, S., Zebrowski, A., Doorley, R., Schluger, N., Quinn, J. W., & Shaman, J. (2020). Flattening the curve before it flattens us: hospital critical care capacity limits and mortality from novel coronavirus ({SARS-CoV2}) cases in {US} counties. MeRxiv. DOI: https://doi.org/10.1101/2020.04.01.20049759

Calafiore, G. C., Novara, C., & Possieri, C. (2020). A time-varying SIRD model for the COVID-19 contagion in Italy. Annual Reviews in Control, 50. https://doi.org/10.1016/j.arcontrol.2020.10.005 DOI: https://doi.org/10.1016/j.arcontrol.2020.10.005

el Asnaoui, K., Chawki, Y., & Idri, A. (2021). Automated Methods for Detection and Classification Pneumonia Based on X-Ray Images Using Deep Learning. https://doi.org/10.1007/978-3-030-74575-2_14 DOI: https://doi.org/10.1007/978-3-030-74575-2_14

Fanelli, D., & Piazza, F. (2020). Analysis and forecast of COVID-19 spreading in China, Italy and France. Chaos, Solitons and Fractals, 134. https://doi.org/10.1016/j.chaos.2020.109761 DOI: https://doi.org/10.1016/j.chaos.2020.109761

Ferguson, N. M., Laydon, D., Nedjati-Gilani, G., Imai, N., Ainslie, K., Baguelin, M., Bhatia, S., Boonyasiri, A., Cucunubá, Z., Cuomo-Dannenburg, G., Dighe, A., Dorigatti, I., Fu, H., Gaythorpe, K., Green, W., Hamlet, A., Hinsley, W., Okell, L. C., Elsland, S. van, … Ghani., A. C. (2020). Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand Neil.

García-García, J. A., Enríquez, J. G., Ruiz, M., Arévalo, C., & Jiménez-Ramírez, A. (2020). Software Process Simulation Modeling: Systematic literature review. In Computer Standards and Interfaces (Vol. 70). https://doi.org/10.1016/j.csi.2020.103425 DOI: https://doi.org/10.1016/j.csi.2020.103425

Hirschprung, R. S., & Hajaj, C. (2021). Prediction model for the spread of the COVID-19 outbreak in the global environment. Heliyon, 7(7). https://doi.org/10.1016/j.heliyon.2021.e07416 DOI: https://doi.org/10.1016/j.heliyon.2021.e07416

https://www.nodehealth.org/covid-resource/covid-19-hospital-impact-model-for-epidemics-chime/. (2021). COVID-19 Hospital Impact Model for Epidemics (CHIME). Https://Www.Nodehealth.Org/Covid-Resource/Covid-19-Hospital-Impact-Model-for-Epidemics-Chime/.

Hu, Z., Ge, Q., Li, S., & Xiong, M. (2020). Artificial Intelligence Forecasting of Covid-19 in China. International Journal of Educational Excellence, 6(1). https://doi.org/10.18562/ijee.054 DOI: https://doi.org/10.18562/IJEE.054

John A. Rice. (2007). Mathematical statistics and data analysis (3rd ed.). Duxbury Press.

Long, J. B., & Ehrenfeld, J. M. (2020). The Role of Augmented Intelligence (AI) in Detecting and Preventing the Spread of Novel Coronavirus. Journal of Medical Systems, 44(3), 59. https://doi.org/10.1007/s10916-020-1536-6 DOI: https://doi.org/10.1007/s10916-020-1536-6

Ma, W., Song, M., & Takeuchi, Y. (2004). Global stability of an SIR epidemic model with time delay. Applied Mathematics Letters, 17(10). https://doi.org/10.1016/j.aml.2003.11.005 DOI: https://doi.org/10.1016/j.aml.2003.11.005

Ma, Y., Xu, Z., Wu, Z., & Bai, Y. (2020). COVID-19 Spreading Prediction with Enhanced SEIR Model. Proceedings - 2020 International Conference on Artificial Intelligence and Computer Engineering, ICAICE 2020. https://doi.org/10.1109/ICAICE51518.2020.00080 DOI: https://doi.org/10.1109/ICAICE51518.2020.00080

Mohammed, M. B., Salsabil, L., Tanaaz, S. S., Shahriar, M., & Fahmin, A. (2020). An extensive analysis of the effect of social distancing in transmission of COVID-19 in Bangladesh by the aid of a modified SEIRD Model. 2020 2nd International Conference on Advanced Information and Communication Technology, ICAICT 2020. https://doi.org/10.1109/ICAICT51780.2020.9333517 DOI: https://doi.org/10.1109/ICAICT51780.2020.9333517

Okwonu, F. Z. , Arunaye, F. I. , & Ahad, N. A. ,. (2020). MATHEMATICAL MODEL FOR SOCIAL DISTANCING IN MITIGATING THE SPREAD OF COVID-19. Nigerian Journal of Science and Environment, 18(1), 173–182.

Okwonu, F. Z., Ahad, N. A., Apanapudor, J. S., & Arunaye, F. I. (2021). Covid-19 prediction model (Covid-19-PM) for social distancing: The height perspective. Proceedings of the Pakistan Academy of Sciences: Part A, 57(4).

Okwonu, F. Z., Ahad, N. A., Apanapudor, J. S., Arunaye, F. I., Ekiyor, F. E., & Okoloko, I. E. (2021). REVIEW OF COVID-19 112 DAYS OF GLOBAL EXPLORATION IN 212 COUNTRIES OUTSIDE CHINA: A COMPREHENSIVE REVIEW. JOURNAL OF HARBIN INSTITUTE OF TECHNOLOGY, 53(9), 1–26.

Okwonu, F. Z., Arunaye, F. I., & Ahad, N. A. (2020). Mathematical model for social distancing in mitigating the spread of covid-19. Nigerian Journal of Science and Environment , 18(1), 173–182.

Ribeiro, M. H. D. M., da Silva, R. G., Mariani, V. C., & Coelho, L. dos S. (2020). Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil. Chaos, Solitons and Fractals, 135. https://doi.org/10.1016/j.chaos.2020.109853 DOI: https://doi.org/10.1016/j.chaos.2020.109853

Santosh, K. C. (2020a). AI-Driven Tools for Coronavirus Outbreak: Need of Active Learning and Cross-Population Train/Test Models on Multitudinal/Multimodal Data. Journal of Medical Systems, 44(5), 93. https://doi.org/10.1007/s10916-020-01562-1 DOI: https://doi.org/10.1007/s10916-020-01562-1

Santosh, K. C. (2020b). COVID-19 Prediction Models and Unexploited Data. Journal of Medical Systems, 44(9), 170. https://doi.org/10.1007/s10916-020-01645-z DOI: https://doi.org/10.1007/s10916-020-01645-z

Tuli, S., Tuli, S., Tuli, R., & Gill, S. S. (2020). Predicting the growth and trend of COVID-19 pandemic using machine learning and cloud computing. Internet of Things (Netherlands), 11. https://doi.org/10.1016/j.iot.2020.100222 DOI: https://doi.org/10.1016/j.iot.2020.100222

Wang, Z., & Tang, K. (2020). Combating COVID-19: health equity matters. In Nature Medicine (Vol. 26, Issue 4). https://doi.org/10.1038/s41591-020-0823-6 DOI: https://doi.org/10.1038/s41591-020-0823-6

Wynants, L., van Calster, B., Collins, G. S., Riley, R. D., Heinze, G., Schuit, E., Bonten, M. M. J., Damen, J. A. A., Debray, T. P. A., de Vos, M., Dhiman, P., Haller, M. C., Harhay, M. O., Henckaerts, L., Kreuzberger, N., Lohmann, A., Luijken, K., Ma, J., Andaur Navarro, C. L., … van Smeden, M. (2020). Prediction models for diagnosis and prognosis of covid-19: Systematic review and critical appraisal. The BMJ, 369. https://doi.org/10.1136/bmj.m1328 DOI: https://doi.org/10.1136/bmj.m1328

Yakovyna, V., & Shakhovska, N. (2021). Modelling and predicting the spread of COVID-19 cases depending on restriction policy based on mined recommendation rules. Mathematical Biosciences and Engineering, 18(3). https://doi.org/10.3934/MBE.2021142 DOI: https://doi.org/10.3934/mbe.2021142

Yang, Z., Zeng, Z., Wang, K., Wong, S. S., Liang, W., Zanin, M., Liu, P., Cao, X., Gao, Z., Mai, Z., Liang, J., Liu, X., Li, S., Li, Y., Ye, F., Guan, W., Yang, Y., Li, F., Luo, S., … He, J. (2020). Modified SEIR and AI prediction of the epidemics trend of COVID-19 in China under public health interventions. Journal of Thoracic Disease, 12(3). https://doi.org/10.21037/jtd.2020.02.64 DOI: https://doi.org/10.21037/jtd.2020.02.64

Zhao, H., Merchant, N. N., McNulty, A., Radcliff, T. A., Cote, M. J., Fischer, R. S. B., Sang, H., & Ory, M. G. (2021). COVID-19: Short term prediction model using daily incidence data. PLoS ONE, 16(4 April). https://doi.org/10.1371/journal.pone.0250110 DOI: https://doi.org/10.1371/journal.pone.0250110

Zheng, N., Du, S., Wang, J., Zhang, H., Cui, W., Kang, Z., Yang, T., Lou, B., Chi, Y., Long, H., Ma, M., Yuan, Q., Zhang, S., Zhang, D., Ye, F., & Xin, J. (2020). Predicting COVID-19 in China Using Hybrid AI Model. IEEE Transactions on Cybernetics, 50(7). https://doi.org/10.1109/TCYB.2020.2990162 DOI: https://doi.org/10.1109/TCYB.2020.2990162

Published
2024-06-30
How to Cite
OkwonuF. Z. (2024). NONPHARMACEUTICAL AND PHARMACEUTICAL COVID-19 PREDICTION MODELS. FUDMA JOURNAL OF SCIENCES, 8(3), 309 - 313. https://doi.org/10.33003/fjs-2024-0803-2551