ONE-STEP CENTRAL COMPOSITE-DESIGNED OPTIMIZATION FOR LEAD (II) IONS ADSORPTION ONTO PRISTINE AND ACID-MODIFIED ORANGE-PEELS FROM SIMULATED WASTEWATER
References
Ali, H., Khan, E. & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019(Cd). https://doi.org/10.1155/2019/6730305 DOI: https://doi.org/10.1155/2019/6730305
Asiminicesei, D. M., Vasilachi, I. C. & Gavrilescu, M. (2020). Heavy metal contamination of medicinal plants and potential implications on human health. Revista de Chimie, 71(7), 16–36. https://doi.org/10.37358/RC.20.7.8222 DOI: https://doi.org/10.37358/RC.20.7.8222
Basu, M., Guha, A. K. & Ray, L. (2017). Adsorption of Lead on Cucumber Peel. Journal of Cleaner Production, 151, 603–615. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.03.028 DOI: https://doi.org/10.1016/j.jclepro.2017.03.028
Ben Khalifa, E., Rzig, B., Chakroun, R., Nouagui, H. & Hamrouni, B. (2019). Application of response surface methodology for chromium removal by adsorption on low-cost biosorbent. Chemometrics and Intelligent Laboratory Systems, 189(April), 18–26. https://doi.org/10.1016/j.chemolab.2019.03.014 DOI: https://doi.org/10.1016/j.chemolab.2019.03.014
Blöcher, C., Dorda, J., Mavrov, V., Chmiel, H., Lazaridis, N. K. & Matis, K. A. (2003). Hybrid flotation - Membrane filtration process for the removal of heavy metal ions from wastewater. Water Research, 37(16), 4018–4026. https://doi.org/10.1016/S0043-1354(03)00314-2 DOI: https://doi.org/10.1016/S0043-1354(03)00314-2
Duru, C., Ibrahim, F. B. & Dandajeh, A. A. (2023). Waste lemon peel as a circular solution for the remediation of lead-contaminated sludge for land application. FUDMA Journal of Sciences, 7(6). https://doi.org/10.33003/fjs-2023-0706-2124 DOI: https://doi.org/10.33003/fjs-2023-0706-2124
El-Naggar, I. M., Ahmed, S. A., Shehata, N., Sheneshen, E. S., Fathy, M. & Shehata, A. (2019). A novel approach for the removal of lead (II) ion from wastewater using Kaolinite/Smectite natural composite adsorbent. Applied Water Science, 9(1), 1–13. https://doi.org/10.1007/s13201-018-0845-0 DOI: https://doi.org/10.1007/s13201-018-0845-0
Gopinath, A., Krishna, K. & Karthik, C. (2020). Adsorptive Removal and Recovery of Heavy Metal Ions from Aqueous Solution/Effluents Using Conventional and Non-conventional Materials. Modern Age Waste Water Problems, 309–328. https://doi.org/10.1007/978-3-030-08283-3_15 DOI: https://doi.org/10.1007/978-3-030-08283-3_15
Gunarathne, V., Ashiq, A. & Ginige, M. P. (2018). Green Adsorbents for Pollutant Removal (Vol. 18, Issue May). https://doi.org/10.1007/978-3-319-92111-2 DOI: https://doi.org/10.1007/978-3-319-92111-2
Hameed, B. H., Mahmoud, D. K. & Ahmad, A. L. (2008). Sorption of basic dye from aqueous solution by pomelo (Citrus grandis) peel in a batch system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 316(1–3), 78–84. https://doi.org/10.1016/j.colsurfa.2007.08.033 DOI: https://doi.org/10.1016/j.colsurfa.2007.08.033
Heffron, J., Marhefke, M. & Mayer, B. K. (2016). Removal of trace metal contaminants from potable water by electrocoagulation. Scientific Reports, 6(March), 1–9. https://doi.org/10.1038/srep28478 DOI: https://doi.org/10.1038/srep28478
Ibrahim, Y., Abdulkarem, E., Naddeo, V., Banat, F. & Hasan, S. W. (2019). Synthesis of super hydrophilic cellulose-alpha zirconium phosphate ion exchange membrane via surface coating for the removal of heavy metals from wastewater. Science of the Total Environment, 690, 167–180. https://doi.org/10.1016/j.scitotenv.2019.07.009 DOI: https://doi.org/10.1016/j.scitotenv.2019.07.009
Ighalo, J. O. & Adeniyi, A. G. (2020). Adsorption of pollutants by plant bark derived adsorbents: An empirical review. Journal of Water Process Engineering, 35(February), 101228. https://doi.org/10.1016/j.jwpe.2020.101228 DOI: https://doi.org/10.1016/j.jwpe.2020.101228
Igwe, J. C., Onyegbado, C. O. & Abia, A. A. (2010). Adsorption isotherm studies of BOD, TSS and colour reduction from palm oil mill effluent (POME) using boiler fly ash. Eclética Química, 35(3), 195–208. https://doi.org/10.1590/s0100-46702010000300020 DOI: https://doi.org/10.1590/S0100-46702010000300020
Iloms, E., Ololade, O. O., Ogola, H. J. O. & Selvarajan, R. (2020). Investigating industrial effluent impact on municipal wastewater treatment plant in vaal, South Africa. International Journal of Environmental Research and Public Health, 17(3), 1–18. https://doi.org/10.3390/ijerph17031096 DOI: https://doi.org/10.3390/ijerph17031096
Joshi, S., Kataria, N., Garg, V. K. & Kadirvelu, K. (2020). Pb2+ and Cd2+ recovery from water using residual tea waste and SiO2@TW nanocomposites. Chemosphere, 257, 127277. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.127277 DOI: https://doi.org/10.1016/j.chemosphere.2020.127277
Knoema. (2018). Nigeria - Citrus fruit production quantity. World Atlas. https://knoema.com/atlas/Nigeria/topics/Agriculture/Crops-%0AProduction-Quantity-tonnes/Citrus-fruit-production.
Li, W., Zhang, L., Peng, J., Li, N., Zhang, S. & Guo, S. (2008). Tobacco stems as a low cost adsorbent for the removal of Pb(II) from wastewater: Equilibrium and kinetic studies. Industrial Crops and Products, 28(3), 294–302. https://doi.org/10.1016/j.indcrop.2008.03.007 DOI: https://doi.org/10.1016/j.indcrop.2008.03.007
Liu, Y. & Ma, R. (2020). Human health risk assessment of heavy metals in groundwater in the luan river catchment within the North China Plain. Geofluids, 2020. https://doi.org/10.1155/2020/8391793 DOI: https://doi.org/10.1155/2020/8391793
Minitab®. (2019). Minitab® statistical software version 19.1 for Windows (64-bit). Minitab, LLC, the United States and Other Countries. https://www.minitab.com
Moyo, M., Chikazaza, L., Nyamunda, B. C. & Guyo, U. (2013). Adsorption batch studies on the removal of Pb(II) using maize tassel based activated carbon. Journal of Chemistry, 2013. https://doi.org/10.1155/2013/508934
Petrinic, I., Korenak, J., Povodnik, D. & Hélix-Nielsen, C. (2015). A feasibility study of ultrafiltration/reverse osmosis (UF/RO)-based wastewater treatment and reuse in the metal finishing industry. Journal of Cleaner Production, 101, 292–300. https://doi.org/10.1016/j.jclepro.2015.04.022 DOI: https://doi.org/10.1016/j.jclepro.2015.04.022
Raril, C. & Manjunatha, J. G. (2020). Fabrication of novel polymer-modified graphene-based electrochemical sensor for the determination of mercury and lead ions in water and biological samples. Journal of Analytical Science and Technology, 11(1). https://doi.org/10.1186/s40543-019-0194-0 DOI: https://doi.org/10.1186/s40543-019-0194-0
Sani, S., Abdullahi, H. & Mazoji, A. M. (2019). Screening experimental design for adsorption of lead (II) Ions from modelled effluent onto raw and functionalized orange peels. Records of Chemical Sciences, 1(3), 86–101.
Soo, K. W., Wong, K. C., Goh, P. S., Ismail, A. F. & Othman, N. (2020). Efficient heavy metal removal by thin film nanocomposite forward osmosis membrane modified with geometrically different bimetallic oxide. Journal of Water Process Engineering, 38(August), 101591. https://doi.org/10.1016/j.jwpe.2020.101591 DOI: https://doi.org/10.1016/j.jwpe.2020.101591
Tunali Akar, S., Arslan, S., Alp, T., Arslan, D. & Akar, T. (2012). Biosorption potential of the waste biomaterial obtained from Cucumis melo for the removal of Pb 2+ ions from aqueous media: Equilibrium, kinetic, thermodynamic and mechanism analysis. Chemical Engineering Journal, 185–186, 82–90. https://doi.org/10.1016/j.cej.2012.01.032 DOI: https://doi.org/10.1016/j.cej.2012.01.032
Ungureanu, O. I., Bulgariu, D., Mocanu, A. M. & Bulgariu, L. (2020). Functionalized PET waste based low-cost adsorbents for adsorptive removal of Cu(II) ions from aqueous media. Water (Switzerland), 12(9), 1–12. https://doi.org/10.3390/W12092624 DOI: https://doi.org/10.3390/w12092624
World Health Organization. (2011). Lead in drinking water: Background document for development of WHO Guidelines for drinking-water quality. 1–19. https://doi.org/10.2105/ajph.13.3.207 DOI: https://doi.org/10.2105/AJPH.13.3.207
Wu, H., Huang, Y., Liu, B., Han, G., Su, S., Wang, W., Yang, S., Xue, Y. & Li, S. (2021). An efficient separation for metal-ions from wastewater by ion precipitate flotation: Probing formation and growth evolution of metal-reagent flocs. Chemosphere, 263, 128363. https://doi.org/10.1016/j.chemosphere.2020.128363 DOI: https://doi.org/10.1016/j.chemosphere.2020.128363
Wu, J., Wang, T., Wang, J., Zhang, Y. & Pan, W. P. (2021). A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity. Science of the Total Environment, 754, 142150. https://doi.org/10.1016/j.scitotenv.2020.142150 DOI: https://doi.org/10.1016/j.scitotenv.2020.142150
Zhou, N., Chen, H., Feng, Q., Yao, D., Chen, H., Wang, H., Zhou, Z., Li, H., Tian, Y. & Lu, X. (2017). Effect of phosphoric acid on the surface properties and Pb(II) adsorption mechanisms of hydrochars prepared from fresh banana peels. Journal of Cleaner Production, 165, 221–230. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.07.111 DOI: https://doi.org/10.1016/j.jclepro.2017.07.111
Zhou, N., Chen, H., Xi, J., Yao, D., Zhou, Z., Tian, Y. & Lu, X. (2017). Biochars with excellent Pb(II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization. Bioresource Technology, 232, 204–210. https://doi.org/https://doi.org/10.1016/j.biortech.2017.01.07 DOI: https://doi.org/10.1016/j.biortech.2017.01.074
Copyright (c) 2024 FUDMA JOURNAL OF SCIENCES
This work is licensed under a Creative Commons Attribution 4.0 International License.
FUDMA Journal of Sciences