ONE-STEP CENTRAL COMPOSITE-DESIGNED OPTIMIZATION FOR LEAD (II) IONS ADSORPTION ONTO PRISTINE AND ACID-MODIFIED ORANGE-PEELS FROM SIMULATED WASTEWATER

  • Sadiq Sani
  • Haruna Abdullahi
  • Abubakar Mansir Mazoji
Keywords: Adsorption efficiency, ANOVA, Central composite design, Lead (II) ions, Orange peels, Response surface methodology

References

Ali, H., Khan, E. & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Journal of Chemistry, 2019(Cd). https://doi.org/10.1155/2019/6730305 DOI: https://doi.org/10.1155/2019/6730305

Asiminicesei, D. M., Vasilachi, I. C. & Gavrilescu, M. (2020). Heavy metal contamination of medicinal plants and potential implications on human health. Revista de Chimie, 71(7), 16–36. https://doi.org/10.37358/RC.20.7.8222 DOI: https://doi.org/10.37358/RC.20.7.8222

Basu, M., Guha, A. K. & Ray, L. (2017). Adsorption of Lead on Cucumber Peel. Journal of Cleaner Production, 151, 603–615. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.03.028 DOI: https://doi.org/10.1016/j.jclepro.2017.03.028

Ben Khalifa, E., Rzig, B., Chakroun, R., Nouagui, H. & Hamrouni, B. (2019). Application of response surface methodology for chromium removal by adsorption on low-cost biosorbent. Chemometrics and Intelligent Laboratory Systems, 189(April), 18–26. https://doi.org/10.1016/j.chemolab.2019.03.014 DOI: https://doi.org/10.1016/j.chemolab.2019.03.014

Blöcher, C., Dorda, J., Mavrov, V., Chmiel, H., Lazaridis, N. K. & Matis, K. A. (2003). Hybrid flotation - Membrane filtration process for the removal of heavy metal ions from wastewater. Water Research, 37(16), 4018–4026. https://doi.org/10.1016/S0043-1354(03)00314-2 DOI: https://doi.org/10.1016/S0043-1354(03)00314-2

Duru, C., Ibrahim, F. B. & Dandajeh, A. A. (2023). Waste lemon peel as a circular solution for the remediation of lead-contaminated sludge for land application. FUDMA Journal of Sciences, 7(6). https://doi.org/10.33003/fjs-2023-0706-2124 DOI: https://doi.org/10.33003/fjs-2023-0706-2124

El-Naggar, I. M., Ahmed, S. A., Shehata, N., Sheneshen, E. S., Fathy, M. & Shehata, A. (2019). A novel approach for the removal of lead (II) ion from wastewater using Kaolinite/Smectite natural composite adsorbent. Applied Water Science, 9(1), 1–13. https://doi.org/10.1007/s13201-018-0845-0 DOI: https://doi.org/10.1007/s13201-018-0845-0

Gopinath, A., Krishna, K. & Karthik, C. (2020). Adsorptive Removal and Recovery of Heavy Metal Ions from Aqueous Solution/Effluents Using Conventional and Non-conventional Materials. Modern Age Waste Water Problems, 309–328. https://doi.org/10.1007/978-3-030-08283-3_15 DOI: https://doi.org/10.1007/978-3-030-08283-3_15

Gunarathne, V., Ashiq, A. & Ginige, M. P. (2018). Green Adsorbents for Pollutant Removal (Vol. 18, Issue May). https://doi.org/10.1007/978-3-319-92111-2 DOI: https://doi.org/10.1007/978-3-319-92111-2

Hameed, B. H., Mahmoud, D. K. & Ahmad, A. L. (2008). Sorption of basic dye from aqueous solution by pomelo (Citrus grandis) peel in a batch system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 316(1–3), 78–84. https://doi.org/10.1016/j.colsurfa.2007.08.033 DOI: https://doi.org/10.1016/j.colsurfa.2007.08.033

Heffron, J., Marhefke, M. & Mayer, B. K. (2016). Removal of trace metal contaminants from potable water by electrocoagulation. Scientific Reports, 6(March), 1–9. https://doi.org/10.1038/srep28478 DOI: https://doi.org/10.1038/srep28478

Ibrahim, Y., Abdulkarem, E., Naddeo, V., Banat, F. & Hasan, S. W. (2019). Synthesis of super hydrophilic cellulose-alpha zirconium phosphate ion exchange membrane via surface coating for the removal of heavy metals from wastewater. Science of the Total Environment, 690, 167–180. https://doi.org/10.1016/j.scitotenv.2019.07.009 DOI: https://doi.org/10.1016/j.scitotenv.2019.07.009

Ighalo, J. O. & Adeniyi, A. G. (2020). Adsorption of pollutants by plant bark derived adsorbents: An empirical review. Journal of Water Process Engineering, 35(February), 101228. https://doi.org/10.1016/j.jwpe.2020.101228 DOI: https://doi.org/10.1016/j.jwpe.2020.101228

Igwe, J. C., Onyegbado, C. O. & Abia, A. A. (2010). Adsorption isotherm studies of BOD, TSS and colour reduction from palm oil mill effluent (POME) using boiler fly ash. Eclética Química, 35(3), 195–208. https://doi.org/10.1590/s0100-46702010000300020 DOI: https://doi.org/10.1590/S0100-46702010000300020

Iloms, E., Ololade, O. O., Ogola, H. J. O. & Selvarajan, R. (2020). Investigating industrial effluent impact on municipal wastewater treatment plant in vaal, South Africa. International Journal of Environmental Research and Public Health, 17(3), 1–18. https://doi.org/10.3390/ijerph17031096 DOI: https://doi.org/10.3390/ijerph17031096

Joshi, S., Kataria, N., Garg, V. K. & Kadirvelu, K. (2020). Pb2+ and Cd2+ recovery from water using residual tea waste and SiO2@TW nanocomposites. Chemosphere, 257, 127277. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.127277 DOI: https://doi.org/10.1016/j.chemosphere.2020.127277

Knoema. (2018). Nigeria - Citrus fruit production quantity. World Atlas. https://knoema.com/atlas/Nigeria/topics/Agriculture/Crops-%0AProduction-Quantity-tonnes/Citrus-fruit-production.

Li, W., Zhang, L., Peng, J., Li, N., Zhang, S. & Guo, S. (2008). Tobacco stems as a low cost adsorbent for the removal of Pb(II) from wastewater: Equilibrium and kinetic studies. Industrial Crops and Products, 28(3), 294–302. https://doi.org/10.1016/j.indcrop.2008.03.007 DOI: https://doi.org/10.1016/j.indcrop.2008.03.007

Liu, Y. & Ma, R. (2020). Human health risk assessment of heavy metals in groundwater in the luan river catchment within the North China Plain. Geofluids, 2020. https://doi.org/10.1155/2020/8391793 DOI: https://doi.org/10.1155/2020/8391793

Minitab®. (2019). Minitab® statistical software version 19.1 for Windows (64-bit). Minitab, LLC, the United States and Other Countries. https://www.minitab.com

Moyo, M., Chikazaza, L., Nyamunda, B. C. & Guyo, U. (2013). Adsorption batch studies on the removal of Pb(II) using maize tassel based activated carbon. Journal of Chemistry, 2013. https://doi.org/10.1155/2013/508934

Petrinic, I., Korenak, J., Povodnik, D. & Hélix-Nielsen, C. (2015). A feasibility study of ultrafiltration/reverse osmosis (UF/RO)-based wastewater treatment and reuse in the metal finishing industry. Journal of Cleaner Production, 101, 292–300. https://doi.org/10.1016/j.jclepro.2015.04.022 DOI: https://doi.org/10.1016/j.jclepro.2015.04.022

Raril, C. & Manjunatha, J. G. (2020). Fabrication of novel polymer-modified graphene-based electrochemical sensor for the determination of mercury and lead ions in water and biological samples. Journal of Analytical Science and Technology, 11(1). https://doi.org/10.1186/s40543-019-0194-0 DOI: https://doi.org/10.1186/s40543-019-0194-0

Sani, S., Abdullahi, H. & Mazoji, A. M. (2019). Screening experimental design for adsorption of lead (II) Ions from modelled effluent onto raw and functionalized orange peels. Records of Chemical Sciences, 1(3), 86–101.

Soo, K. W., Wong, K. C., Goh, P. S., Ismail, A. F. & Othman, N. (2020). Efficient heavy metal removal by thin film nanocomposite forward osmosis membrane modified with geometrically different bimetallic oxide. Journal of Water Process Engineering, 38(August), 101591. https://doi.org/10.1016/j.jwpe.2020.101591 DOI: https://doi.org/10.1016/j.jwpe.2020.101591

Tunali Akar, S., Arslan, S., Alp, T., Arslan, D. & Akar, T. (2012). Biosorption potential of the waste biomaterial obtained from Cucumis melo for the removal of Pb 2+ ions from aqueous media: Equilibrium, kinetic, thermodynamic and mechanism analysis. Chemical Engineering Journal, 185–186, 82–90. https://doi.org/10.1016/j.cej.2012.01.032 DOI: https://doi.org/10.1016/j.cej.2012.01.032

Ungureanu, O. I., Bulgariu, D., Mocanu, A. M. & Bulgariu, L. (2020). Functionalized PET waste based low-cost adsorbents for adsorptive removal of Cu(II) ions from aqueous media. Water (Switzerland), 12(9), 1–12. https://doi.org/10.3390/W12092624 DOI: https://doi.org/10.3390/w12092624

World Health Organization. (2011). Lead in drinking water: Background document for development of WHO Guidelines for drinking-water quality. 1–19. https://doi.org/10.2105/ajph.13.3.207 DOI: https://doi.org/10.2105/AJPH.13.3.207

Wu, H., Huang, Y., Liu, B., Han, G., Su, S., Wang, W., Yang, S., Xue, Y. & Li, S. (2021). An efficient separation for metal-ions from wastewater by ion precipitate flotation: Probing formation and growth evolution of metal-reagent flocs. Chemosphere, 263, 128363. https://doi.org/10.1016/j.chemosphere.2020.128363 DOI: https://doi.org/10.1016/j.chemosphere.2020.128363

Wu, J., Wang, T., Wang, J., Zhang, Y. & Pan, W. P. (2021). A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity. Science of the Total Environment, 754, 142150. https://doi.org/10.1016/j.scitotenv.2020.142150 DOI: https://doi.org/10.1016/j.scitotenv.2020.142150

Zhou, N., Chen, H., Feng, Q., Yao, D., Chen, H., Wang, H., Zhou, Z., Li, H., Tian, Y. & Lu, X. (2017). Effect of phosphoric acid on the surface properties and Pb(II) adsorption mechanisms of hydrochars prepared from fresh banana peels. Journal of Cleaner Production, 165, 221–230. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.07.111 DOI: https://doi.org/10.1016/j.jclepro.2017.07.111

Zhou, N., Chen, H., Xi, J., Yao, D., Zhou, Z., Tian, Y. & Lu, X. (2017). Biochars with excellent Pb(II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization. Bioresource Technology, 232, 204–210. https://doi.org/https://doi.org/10.1016/j.biortech.2017.01.07 DOI: https://doi.org/10.1016/j.biortech.2017.01.074

Published
2024-06-30
How to Cite
SaniS., AbdullahiH., & MazojiA. M. (2024). ONE-STEP CENTRAL COMPOSITE-DESIGNED OPTIMIZATION FOR LEAD (II) IONS ADSORPTION ONTO PRISTINE AND ACID-MODIFIED ORANGE-PEELS FROM SIMULATED WASTEWATER. FUDMA JOURNAL OF SCIENCES, 8(3), 201 - 213. https://doi.org/10.33003/fjs-2024-0803-2499